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Abstract

This paper provides an overview on the fundamental characteristics associated with the behaviour
of free-burning fires as it influences fire control operations, based primarily on a review of the
overseas literature and current developments in the field of wildland fire management. Particular
emphasis is placed on the critical importance of fast, aggressive initial attack in relation to elapsed
time since ignition as the severity of burning conditions increases in order to avert the potential for
large, costly fires in forest and rural areas. The threat of wildfires can probably never be entirely
eliminated, but hopefully a larger percentage of future occurrences can be suppressed at much
smaller sizes than at present by more fully incorporating considerations of fire behaviour into training,
planning and operations than is currently the case in New Zealand fire protection.
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Abstract

This paper provides an overview on the fundamental characteristics associated with the behaviour
of free-burning fires as it influences fire control operations, based primarily on a review of the
overseas literature and current developments in the field of wildland fire management. Particular
emphasis is placed on the critical importance of fast, aggressive initial attack in relation to elapsed
time since ignition as the severity of burning conditions increases in order to avert the potential for
large, costly fires in forest and rural areas. The threat of wildfires can probably never be entirely
eliminated, but hopefully a larger percentage of future occurrences can be suppressed at much
smaller sizes than at present by more fully incorporating considerations of fire behaviour into training,
planning and operations than is currently the case in New Zealand fire protection.

Keywords: rural fire management; fire suppression; fire behaviour; preparedness planning.

Introduction

All forest and rural fire management organisations, regardless of the land-use objectives, have as
their basic tenet to keep the area burned by unwanted fires to a minimum in order to eliminate the
threat to life and property, to reduce the potential damages to renewable resources, and to prevent
fire fighting expenditures from escalating unduly, commensurate with sociopolitical, economic,
and ecological realities (Wilson 1975; Burrows et al. 1989; Anon. 1991a). The best prospect for
alleviating major wildfire problems, taking into account an area’s fire climatology (e.g., the frequency
of critical fire weather conditions), is to create fuel situations that will reduce the energy output rate
of such fires to a point where conventional fire fighting methods will be effective (Wilson and Dell
1971; Countryman 1974; Cheney 1985b, 1989; Wilson 1992). This approach to reducing the
likelihood of conflagrations through the application of prescribed fire at regular intervals in a mosaic
pattern is epitomised by the broad-scale programmes of fuel reduction burning which have been
developed for the eucalypt forests in south-eastern Western Australia (Underwood and Christensen
1981) and pine forests of the south-eastern U.S.A. (Wade and Lundsford 1989). Certain forest and
vegetation types don’t necessarily lend themselves to using fire as a means of hazard reduction: for
example, thin-barked species which succumb even to very mild fires (Johnson 1992). However,
other forms of managing fuels which don’t involve burning are potentially available — for example,
fuelbreaks composed of relatively non-flammable vegetation (Johnson 1975; Green 1977) —
although they haven’t achieved the same degree of implementation as prescribed underburning.
Losses due to wildfire occurrences in commercial forests can be minimised to a certain extent by
harvest scheduling (Dempster and Stevens 1987), plantation design (Cheney and Richmond 1980),
and by other forms of fuel and/or vegetation management (Burrows 1981; Cheney 1985a).

Regardless of how intensive and effective fuel/vegetation management practices become, any fire
management organisation must still maintain its initial attack fire suppression capability. In his
book on An Introduction to Fire Dynamics, Drysdale (1985) made the following statement:

... further major advances in combating wildfire are unlikely to be achieved simply by
continued application of the traditional methods. What is required is a more fundamental
approach which can be applied at the design stage ... Such an approach requires a
detailed understanding of fire behaviour ...
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Fire Behaviour Characteristics

Fire behaviour is generally defined as the manner in which fuel ignites, flame develops, fire spreads
and exhibits other related phenomena such as firewhirls (Countryman 1971) as determined by the
interaction of fuels, weather, and topography (Countryman 1972). In certain instances, the fire
suppression operations can in fact adversely affect wildfire behaviour (Shields 1969; Haines 1989).

The probability that an ignition will occur is dependent primarily on the firebrand size and type
(i.e., glowing or flaming) and whether the fuels are receptive or not based on their moisture content,
temperature, bulk density, etc., at the point of origin (Parrott and Donald 1970; Blackmarr 1972;
Stockstad 1979; Countryman 1983). Assuming a firebrand lands on fuels favourable for ignition,
the possibility of whether a fire start will sustain itself and spread outwards from the immediate
vicinity of the initial point source will depend on the continuity, quantity, and moisture content of
the fine fuels, and the wind speed at the ground surface (Wilson 1985, 1987).

It’s on the basis of this premise that the present paper has been prepared with respect to the forest
and rural fire scene in New Zealand, utilising the literature primarily from Canada, Australia, and
the U.S.A. The economics of fire protection in relation to the values-at-risk from wildfire (Cooper
and Ashley-Jones 1987; Robertson 1989) will not be dealt with here. Terminology follows Merrill
and Alexander (1987). The “anatomy” of a forest or rural fire is depicted in Figure 1.

FINGER
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RIGHT FLANK
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FINGER
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HEAD or FRONT

FINGER

LEFT FLANK
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ISLAND
(unburned)
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Figure 1. The anatomical parts of a wildland fire (after Moberly et al. 1979).



3

The more important fire behaviour characteristics from the practical standpoint of fire suppression
are:

• forward rate of spread

• fire intensity

• flame front dimensions

• spotting pattern (density and distances)

• fire size and shape

• rate of perimeter increase

• burn-out time

Head fire spread rates can range from about 1.5 m/h (lower limit of fire spread in surface fuels) up
to 14 km/h for forest fires and greater than 20 km/h for grass fires. The intensity of a free-burning
fire, as determined by Byram’s (1959a) formula, is probably the most commonly accepted measure
of rating fire severity. For practical purposes, Byram’s (1959a) fire intensity (kW/m) = [available
fuel load (t/ha) × rate of spread (m/h)] ÷ 2 (Burrows 1984)*. Fire intensity can vary over four orders
of magnitude from about 10 kW/m (threshold for fire spread by flaming combustion) to in excess
of 100 000 kW/m (major conflagrations).

Fire intensity is directly related to flame size (Fig. 2). Flame heights associated with high-intensity
fires generally average about 15–45 m with occasional flashes up to 185 m or more (Byram 1959b).
Although many fuel type-specific empirical fire intensity/flame length relationships exist, a simple
approximation is I = 300 × L2 (after Newman 1974), where I = fire intensity (kW/m) and L = flame
length (m). Note that flame length should not be confused with flame height which is the maximum
vertical extension of the flame front (Fig. 2); they are equal only in still air conditions (i.e., no

* This formulation is based on the assumption that the net low heat of combustion = 18 000 kJ/kg (cf. Forestry Canada
Fire Danger Group 1992).

Figure 2. Cross-sectional view of a stylised head fire on level terrain illustrating the energy or heat-
release stages during and following passage of the flame front, flame length (L), flame height (hF),
flame angle (A), flame tilt angle (AT), horizontal flame depth (D), and the resulting depth of burn
(DOB) (from Alexander 1982).
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wind) on level ground. For example, an average flame front 1 m in height and oriented at a 45°
angle would by simple geometry have a flame length of about 1.4 m. A firefighter standing 2 m
away from a 1-m-high flame front would find the pain on exposed skin (e.g., bare hands) unbearable
after 30 seconds; this would be reduced to less than 10 seconds if the person was within a metre of
the flames (Vines 1981). If the flames were greater than 15 m in height firefighters would have to
be more than 35 m away to avoid disabling burns from the radiant heat (Green and Schinke 1971).

Fire intensity or flame length is a major determinant of the difficulty of containing a wildfire (Fig.␣ 3).
A rough rule of thumb is that the minimum width of a fireguard should be, in the absence of
spotting, at least one to one-and-a-half times the flame length (Byram 1959a; Albini 1976).

Spot fires occur when burning embers or sparks are lofted above the flame zone as a result of
thermal updrafts created by the fire’s convective activity, that are then deposited some distance
ahead of the advancing fire front (Clements 1977; Albini 1979, 1983). A single spot fire may occur
tens of kilometres downwind or alternatively many firebrands may literally “shower” unburned
fuels just a few metres away from the fire edge. Assuming a firebrand(s) is capable of igniting the
fuel it has landed upon (as determined by moisture content and structural properties), spot fire
distance is related primarily to fire intensity and wind speed (Anon. 1960; Morris 1987), whereas
spot fire density is largely a function of the characteristics of the potential firebands for a given fuel
type (quantity, particle density, shape, size, etc.). In the case of surface fires, the onset of significant
spotting activity from the standpoint of control problems in terms of an upper limit of intensity is
generally acknowledged to be around 1500–2000 kW/m (Taylor and Wendel 1964; Hough and
Albini 1978; Hirsch et al. 1979). Crown fires inevitably spawn spot fires (Hesterberg 1959). A fire
intensity of about 4000 kW/m is commonly recognised as a threshold for active crowning although
this certainly depends on the stand and crown structure (Alexander 1988).

Figure 3. Probability of a grass fire breaching a mineralised firebreak as a function of fire intensity,
firebreak width and the absence (A) or presence (B) of trees within 20 m of the upwind side of the
firebreak (e.g., in the former case, there’s a 90% probability that a grassland fire with an intensity of
5000 kW/m will be stopped by a 1.0-m-wide firebreak). These nomograms are based on research
carried out in the Northern Territory of Australia involving eucalypt trees (after Wilson 1988).
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The general shape of wind-driven fires originating from a point ignition tends to resemble an ellipse
provided the wind direction remains relatively constant (Fig. 4). Assuming this elliptical fire shape,
the rate of spread and intensity are the greatest at the head and gradually diminish from the flanks
to the back of the fire (Catchpole et al. 1992). Elliptical fire area and length of the perimeter can be
calculated on the basis of the head and back fire spread rates, wind speed, and elapsed time since
ignition (e.g., Forestry Canada Fire Danger Group 1992).

The simple elliptical fire growth model employed to predict area burned and perimeter length can
also be used to calculate a fire’s rate of perimeter growth or increase. Alternatively, the rate of
perimeter increase (m/h) is approximately = head fire rate of spread × 2.5 (e.g., 150 m/h × 2.5 =
375 m/h). The total length of the fire perimeter could also be quickly estimated by multiplying the
forward spread distance (i.e., head fire rate of spread × elapsed time since ignition) using this
simple rule of thumb (cf. Sneeuwjagt and Peet 1985).

Burn-out time represents the duration of active flaming and smouldering combustion. Ground or
subsurface fires will remain burning provided there is sufficient fuel of appropriate dryness left
after passage of the main fire front (Henderson and Muraro 1968), in which cases mop-up may be
exceedingly time-consuming and in turn costly (González-Cabán 1984). Thus, fuel complexes
exhibiting heavy fuel loads, especially deep organic layers, such as found in peat bogs and old
growth forests, and large decaying logs are especially prone to such fire persistence following
major dry spells or droughts (Kiil 1971; Brady 1988).

Figure 4. Simple elliptical fire growth model (from Alexander 1985).
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Fire Suppression Effectiveness and Resource Productivity

Fire suppression involves all the activities concerned with controlling and finally extinguishing a
wildfire following its ignition. The fire triangle is commonly used to illustrate the basic principles
of fire suppression (Fig. 5). To stop a free-burning fire you must either (1) remove the fuels ahead
of the spreading combustion zone, (2) reduce the temperature of the burning fuels, or (3) exclude
oxygen from reaching the combustion zone by smothering. In practical terms this generally means
creating a physical barrier in front of the fire by removing the fuels or cooling/smothering the
flames with water, covering them with mineral soil, suppressants (e.g., foam), or chemical fire
retardants by various means from either the ground or the air (Mactavish 1960; Welsh 1965; Hardy
1977; Lieskovsky and Newstead 1980; Ingoldby and Smith 1982; Ogilvie et al. 1989; French 1990).
In almost every fuel type it is necessary to physically separate the burnt from the unburnt fuels
along the fire perimeter in order to prevent re-kindling and “breakaways” from occurring even after
the fire has been initially extinguished with water or stopped by the application of chemical fire
retardants (Cheney 1986).

The various kinds of resources commonly employed in forest and rural fire fighting each have an
upper limit to their effectiveness. These limits, taking into account radiation levels and the “breaching”
potential by spotting and direct flame contact or radiation, can be related to fire intensity (Table 1).
Direct attack on fire perimeters with intensities in excess of 4000 kW/m is generally not possible.
Backfiring is sometimes possible but not necessarily always successful up to intensities of around
10 000 kW/m, although this depends to a large extent on the prevailing wind velocity, the fire’s
spotting potential and forward rate of spread as well as other considerations such as the availability
of anchor points (De Coste et al. 1968; Cooper 1969; Hodgson and Cheney 1969; Deeming and
Wade 1974; Moore et al. 1976; Burrows 1986). Aerial devices such as the helitorch or flying drip
torch (Muraro 1976) have certainly enabled backfiring to be undertaken more effectively and safely
than by ground ignition (Quintilio et al. 1985).

OXYGEN FUEL

HEAT

Figure 5. The wildland fire triangle (after Barrows 1951).
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Table 1. Generalised limits of fire suppression effectiveness in relation to fire intensity (after
Alexander and De Groot 1988; Alexander and Lanoville 1989).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Fire intensity Control

(kW/m) requirements
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

< 500 Ground crews with hand tools

500–2000 Water under pressure and/or heavy machinery

2000–4000 Helitanks and airtankers using chemical fire retardants

> 4000 Very difficult if not impossible to control
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Resource production rates or the productivity of fire suppression forces are commonly compared
against the fire size (i.e., perimeter length) at the time of initial attack and the rate of perimeter
increase to determine the time until containment is achieved (Riebold 1959; Pirsko 1961; Douglas
1973; Cheney 1975; Barney 1983). Production rates are most often given in terms of metres/person-
hour for individual crew members using hand tools, power equipment or other devices (Ovchinnikov
and Grumans 1988; Murphy et al. 1989, 1991) or in metres/hour for various sized ground crews,
ground tankers, bulldozers (Table 2), ploughs, and other heavy machinery (Crosby et al. 1963;
Moore et al. 1976; Barney and Peters 1983; Sneeuwjagt and Peet 1985; Anon. 1988; Phillips et al.
1988; Ponto 1989). Unless otherwise stated, production rates imply a certain minimum width. For
example, the blade width of medium and large bulldozers is generally about 3–4.5 m whereas
ground crews using hand tools commonly construct fireguards around 1 m wide.

Table 2. An example of fireguard production rates by fuel type for three commonly used fire
suppression resources (adapted from Schmidt and Reinhart 1982).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Generalised Crew with 5-person Medium-sized

fuel hand tools pumper crew* bulldozer

type (m/person-hour) (m/hour) (m/hour)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Short grass 80 805 1509

Tall brush 13 402 734

Conifer stand 40 463 694

Logging slash 20 402 785
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
* 946-litre (250 U.S. gallons) tank capacity (R.G.Schmidt, personal communication).

Commonly, a mixture of resources are engaged in a wildfire suppression operation. For example, in
South Australian exotic pine plantations, a five-person Woods and Forests Department crew can
“knock down” the fire edge by direct attack using water (Table 3) from canvas hose lays (run off
pumper trucks and/or supply tankers located on roads or firebreaks). This is immediately followed
up with the construction of a fireguard to mineral soil by a ground crew using McLeod tools or a
John Deere 350 bulldozer fitted with a V-blade plough. The overall production rate is about 500–
700 m/hour (Geddes and Pfeiffer 1981).
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Table 3. Variation of nozzle size and pressure for performing common forest and rural fire suppression
tasks (after Luke and McArthur 1978).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Type of Working arrangements Performance
fire   Nozzle ----------------------------------------------------------
or ---------------------------- Velocity Vertical Horizontal Discharge
fire Size Pressure at nozzle jet throw jet throw rate

situation (mm) (kPa) (km/h) (m) (m) (l/min)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Mop up; attacking 3.2 200 75 9 10 10

low intensity fires 3.2 350 100 11 13 13

Attacking moderate 3.2 500 115 12 13 15

intensity fires; reaching 6.3 200 75 12 13 40

into crowns of low trees 6.3 350 100 14 17 50

Standing off from high 6.3 500 115 15 20 60

intensity fires 6.3 700 135 15 22 70

Reaching into crowns of 9.5 700 135 22 29 160

moderately tall trees

Standing off from very 12.7 350 100 24 25 200

high intensity fires

Reaching into the 12.7 500 115 27 29 240

crowns of high trees 12.7 700 135 30 33 290

12.7 1000 145 32 35 340
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

When it comes to the delivery of water, it is instructive to examine a pumper truck’s tank capacity
with respect to its capability in terms of available operational time before it has to be refilled. The
time taken to empty a 450-litre tanker has been worked out for various nozzle pressures and sizes
(Anon. 1987b) but what is really needed is an assessment in relation to the fire fighting task (Table 3).
For example, Forestry Corporation of New Zealand Limited has a fleet of seven 4WD appliances
available for call-out in the Kaingaroa Forest. Each unit is capable of holding 3600 litres of water
and carrying 860 metres of hose. Thus, an individual unit could sustain an initial attack for about
1 hour on a high intensity fire before refilling would be required. However, this would be reduced
to 18 minutes for a very high intensity fire.

Resource production rates will naturally vary according to the type of suppression technique
employed (e.g., “hot spotting” vs. continuous fireguard construction), fuel type characteristics,
slope steepness, soil conditions, fire intensity or flame length (Fig. 6) and cumulative time engaged
in the fire suppression operation (e.g., breakdowns in heavy machinery). Several studies have shown
that fireguard production rates are subject to considerable variation (e.g., Haven et al .1982; Barney
et al. 1992), probably because many factors are difficult to adequately quantify (e.g., an individual’s
motivation, training, and experience). The relative efficiency of fire suppression crews gradually
decreases with time owing to the fatigue factor (Budd et al. 1991). For example, crews after the
first 5 hours of work may be only 60% as effective as during the first few hours (Anon. 1988).
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Figure 6. Hot-spotting production rate for initial attack crews using hand and power tools as a
function of head fire intensity and flame length in two broad fuel types commonly found in the
boreal forest of central Alberta, Canada (adapted from Quintilio et al. 1990 and Murphy et al.
1991).

Figure 7. An example of a drop pattern or “footprint” for a Dromader M-18 airtanker delivering
water in an open field (after Stechishen and Halicki 1984). Contour lines indicate the depth or
thickness of the water concentration.

The productivity of airtankers and helitankers is generally thought of in terms of simply the linear
length (m) per drop as determined from an analysis of drop pattern characteristics (e.g., Storey et
al. 1959; Grigel et al. 1974; Rawson 1977; Rees 1983; Stechishen and Halicki 1984; Newstead and
Lieskovsky 1985) such as presented in Figure 7. Of course not all of the gross drop pattern is
equally effective (Storey et al. 1959). Thus, partial penetration of the drop zone is to be expected
(Stechishen 1976; Newstead and Alexander 1983). In certain fuel types, particularly dense forests,
a considerable amount of liquid can be intercepted by the tree canopy (Anderson 1974). The net
effective length and width is determined by the “coverage level” (George 1981) or depth of the
liquid that actually reaches the critical fuels to be treated at the ground surface. This is a function of
a host of factors, including fuel type and topographic characteristics, drop height and speed, tank
size/configuration or bucket capacity/design, and the atmospheric conditions (especially wind
velocity) at the time of the drop (Hardy 1977; Howard 1980; George and Johnson 1990). The
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amount required to impede a fire’s progress varies according to intended use (i.e., direct or indirect
application), type of substance (water, foam or chemical retardant), fire intensity, and the physical
properties of the surface fuel bed (Stechishen 1970; Stechishen and Little 1971; Loane and Gould
1986). For example, the depth of water required to stop a fire in cured grass or in pine needle litter
with an intensity of 2000 kW/m would be 0.06 cm and 0.53 cm, respectively; the corresponding
required depths using a long-term chemical fire retardant, such as FIRETROL 936, would be 0.03 cm
and 0.22 cm (Loane and Gould 1986).

Fire containment with a helitanker or an airtanker depends on the ability to perform at a pace in
excess of the fire’s rate of perimeter increase (Fig. 8). However, at least for a single land-based
airtanker, the “one strike concept” would be the more typical scenario (Hodgson and Newstead
1978). The effective drop lengths of “light” helicopters such as the Hughes 500 and Bell Jet Ranger
using a monsoon bucket are considerably shorter than those of airtankers (cf. Quintilio and Anderson
1976) because of the limitations determined by their maximum sling load (Anon. 1987a). For this
reason and because of their manoeuvrability and capacity to make multiple sorties before refuelling
is required, the greatest role of helitankers is in “hot spotting” along the fire perimeter (Grigel
1974; Murray 1986; Anon. 1987a).

Figure 8. An example of the simulated productivity of a “light” helicopter with a 530-litre capacity
bucket dropping water in the exotic pine plantation fuel types of south-eastern Queensland (after
Hunt 1986).

Aircraft can be an extremely efficient fire suppression resource, especially when used during the
incipient phase of fire growth when immediate access by ground suppression crews is not possible
(Storey et al. 1959; McArthur 1969). They are also very expensive to maintain and operate (even
on a contractual basis), let alone purchase. Helitankers and airtankers have in many instances been
credited with enormous savings (e.g., Countryman 1969). They are nevertheless not a universal
“cure all” for wildfire suppression problems. Even low or moderate intensity fires can spread around
(Fig. 9), burn through/under (Alexander 1989), and/or spot over (George et al. 1989) a retardant,
foam, or water drop.
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Figure 9. Two examples of the relative effectiveness of chemical retardant drops delivered from a
helitanker in the temporary containment of a free-burning fire, based on experimental studies carried
out in the eucalypt forest fuel type of eastern Victoria, Australia (after Cheney and Hutchings 1986);
the contours represent the fire perimeter at successive time intervals. In the first case (A), the head
fire intensity was 1760 kW/m and spot fire activity ahead of the flame front was minimal. The
retardant line, which was about 30 m long and 10 m wide, extinguished the head fire for about
1 hour until the flank flames burnt around the extremities of the drop and formed a new head fire.
In the second case (B), the head fire intensity was 2670 kW/m and this more vigorous, rapidly
spreading fire produced spot fires 25 to 300 m ahead of the main flame front. The retardant drop
zone offered little resistance to the spread of this fire and the head fire intensity was halved for a
15-minute period in the vicinity of the drop and the surface fuels within the drop zone remained
unburnt. The head fire later resumed an intensity of 2700 kW/m and spotted across a 30-m-wide
firebreak.

The cost-effectiveness of aerial fire suppression for a particular area needs to be critically examined
in relation to the use of water versus chemical fire retardants (Owen 1984) and in terms of other
types of resources (Quintilio and Anderson 1976; Loane and Gould 1986; Bell 1987; Gould 1987).
Even large airtankers, such as the Canadair CL-215 or CL-415 and the C-130 Hercules MAFFS,
are effective over a fairly narrow range of the fire intensity spectrum (Cheney et al. 1982; George
1985); furthermore, their efficiency is dependent to a great extent on the pilot’s skill and the capability
of the “bird dog” officer (Murray 1988). In using helitankers and airtankers it must be remembered
that the primary purpose of aerial attack “... is to retard the progress of the fire and hold it until
ground crews can move in and are able to complete the suppression job” (Haggarty et al. 1983).

Revelations Concerning Elapsed Time Since Ignition

The general pattern of a fire’s growth with suppression action is illustrated in Figure 10. The fire is
not detected until some time after ignition takes place. Because of the delay in mobilising and
transporting personnel and equipment to the fire site, the actual attack on the fire does not begin
until an even later time. The size of the fire, which has been growing steadily or even accelerating
in rate of growth up to this time, still continues to grow after the initial attack but its rate of growth
is slowly decreased until the fire is brought under control (Fig. 11).
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Figure 11. An example of the typical growth pattern exhibited by wildland fires that are affected by
fire suppression action, which tends to limit the area burned significantly below their free-burning
potential size. This particular example is of the 1966 Monbulla Fire which occurred in the pasture
lands of the south-eastern region of South Australia (after Douglas 1966). Suppression forces
consisted exclusively of pumper-truck units.

Figure 10. Schematic diagram illustrating the various activities involved in controlling and
extinguishing a wildfire as a function of cumulative area burned and elapsed time since ignition
(after Parks 1964).
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Inspite of our best fire prevention efforts, the simple fact of the matter is that wildfires will continue
to occur; the necessity of controlling wildfires is the result of the failure of the fire prevention
programme (Gaylor 1974). As Joe Taylor stated at the 1989 Prevent Rural Fires Convention held in
Wellington, “You cannot prevent fires. You can only prevent small fires becoming big ones”. It’s
generally acknowledged that the key to reducing area burned and in turn damages and suppression
costs is fast and effective initial attack. Yet, in my opinion not enough attention is paid in initial
attack preparedness planning to the critical importance of time in relation to initiating fire behaviour
and in turn fire suppression problems; in this regard McArthur’s (1968) paper on The Effect of Time
on Fire Behaviour and Fire Suppression Problems should be required reading for all forest and
rural firefighters. Valuable time can be lost between the moment of ignition and the start of effective
work on the fire perimeter, meanwhile an initiating fire is gradually expanding in area (Fig. 12). In
this regard, four elapsed time intervals or stages are generally recognised (see Fig. 13):

Discovery period of time from the start of a fire until it is first seen by someone
who reports it.

Report period of time from discovering the fire until the first person charged
with initiating suppression action is notified of its existence and location,
etc.

Get-Away period of time taken between reporting of the fire until the departure of
the initial attack forces.

Travel period of time between departure of the initial attack forces and their
arrival at the fire.

Within the limits of 24 km, which is usually accepted as the maximum effective radius of vision for
lookout observers (Show and Kotok 1937), average discovery time has been determined from
experimental fires to be about 10–11 minutes (Buck 1938; Bickford and Bruce 1939) (Fig. 14). It
generally takes perhaps 1–3 minutes for a lookout observer to determine a fire’s location and to
note other features (e.g., colour of smoke, angle of the convection column, apparent size of the fire,
estimate of current wind speed and direction) and then to communicate this information to a dispatcher
(Anon. 1971a, 1971b, 1986). If the general public is relied upon for fire detection, generally the fire
sizes at initial attack are considerably larger; this of course depends on the population density and
the proximity of a fire in relation to the populace.

Figure 12. Conceptualisation of free-burning fire growth with the passage of time since ignition
before containment action begins.
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Figure 13. The chain of actions required to control a wildfire (from Gaylor 1974).

When a wildfire is reported, a dispatcher must make several key decisions (the impact of these
decisions becomes especially acute on multiple fire days). How many resources should be sent,
which ones and from where? This could easily take another 1–3 minutes or longer depending on the
procedures involved and the time taken to contact the initial attack forces by phone or radio.
Dispatching is organised in various ways (Chase 1980; Kourtz 1987a). It may take the form of
threat analysis (Bratten et al. 1981) in which a knowledgeable and experienced dispatcher’s response
(Chandler et al. 1983) follows from an assessment of the fire’s location and current behaviour
whereas automated or preplanned dispatching (e.g., Geddes and Pfeiffer 1981) relies upon
predetermined criteria (e.g., fire danger class).

Figure 14. Discovery time of incipient fires by lookout observers under favourable atmospheric
visibility as a function of distance in the mature ponderosa pine fuel type of northern California,
U.S.A. (after Buck 1938).

Detection

Size-up

Report

D
ispatch

Res
po

ns
e

Containment

M
op

-u
p

Pat
ro

l

6

8

10

12

14

16

0 10 20 30 40 50 60

D
is

co
ve

ry
 ti

m
e 

(m
in

ut
es

)

Distance (km)



15

The get-away or response time must also consider the time involved in loading up men and equipment
and/or the time taken for rotary- or fixed-wing aircraft to warm up before proceeding to the fire
area. A minimum get-away time would probably be an additional 1–5 minutes depending on whether
aircraft were involved or not. For example, the time taken for helicopters to become airborne and
headed to a fire averages about 5 minutes (Hart 1977).

Most fire management organisations have established elapsed time standards for discovery, reporting
and get-away (e.g., Gray and Janz 1985; Anon. 1986; De Groot 1990) which generally are not
subject to such wide variation as are travel times which are determined to a large extent by the
distances involved with respect to the fire location. Francis (1972), for example, has suggested as a
general rule of thumb that rural land owners should be capable of reaching any part of their property
within 10–15 minutes from the time an “alarm” is raised. Minimising travel time to a wildfire is an
important criterion when suppression resources are dispatched and for that reason, travel time is
one of the most important measures used in evaluating alternative arrangements of initial attack
locations (Mees 1986). In order to minimise travel times during critical fire danger periods, fire
suppression personnel and their equipment may on a daily basis be temporarily located at strategic
points rather than being stationed at a central depot (Gray and Janz 1985). Travel times can also
have bearing on decisions as to where permanent fire control facilities should be located (Hodgson
and Newstead 1978; Martell 1982).

The time taken to reach the fire area can be determined rather precisely for helicopters and airtankers
based on their cruise speeds (Anon. 1975, 1991a) and the distance involved (Anon. n.d.; Preece et
al. 1989); for example, the cruising speeds of a Hughes 500 and a Bell Jet Ranger are nominally
about 200 km/h. For ground suppression forces and equipment travelling by vehicle, road conditions
must be considered (Sneeuwjagt and Peet 1985; Anon. 1988). Finally, firefighters may have to
walk some distance to reach the fire from a helispot or road.

Some time will also probably be taken for “size-up”. This initial attack reconnaissance or “triage”
(Pyne 1984) represents the most crucial time in the entire fire fighting operation (Chandler et al.
1983). Sizing up a fire shouldn’t be rushed for as Gaylor (1974) has emphasised, “A correct size-up
often means the difference between success and failure.” The pocket-size handbook Planning For
Initial Attack (Moberly et al. 1979) is an excellent reference on this subject area.

The fire’s behaviour will determine whether direct or indirect attack is possible; excellent summaries
on fire suppression strategy and tactics can be found in a variety of textbooks and other sources
dealing with wildland fires (e.g., Anon 1973; Brown and Davis 1973; Luke and McArthur 1978;
Chandler et al. 1983; Barney et al. 1984; Pyne 1984; Perry 1990). If the intensity at the fire’s head
and its rate of perimeter increase are sufficiently low for the type and number of initial attack forces
dispatched to the fire, then containment at a small size will be achieved relatively quickly, otherwise
an escaped fire must be contended with and the possibility of a large project or campaign fire in
turn exists (Perry 1989).

Once the fire has been contained, the essential job of mopping up begins and afterwards the area
must be patrolled before it is declared truly “out”. Infrared scanning equipment can be of immense
value during these later stages in the life history of wildfire, especially if large areas must be searched
(Ogilvie 1981, 1982).

A successful initial attack is based on the principle of what Gaylor (1974) considers as one of the
“seven secrets of wildfire control” — hit ‘em hard and keep ‘em small! The questions of “how
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much” and “how soon” manpower and equipment should be committed to a newly reported fire can
be approximated with some degree of certainty based on the characteristics of the fire’s environment
(e.g., slope steepness, soil conditions, fuel types, wind velocity) and probable behaviour (i.e., head
fire spread rate and intensity). The extreme alternative of sending “everything you have as soon as
possible” is, from economic and strategic points (e.g., multiple fires at opposite ends of a fire
protection area) of view, just as irresponsible as the other alternative of sending too little or the
wrong kind of resources — “the optimal strategy lies somewhere in between” (Jewell 1963).

All fires originating from a single ignition point undergo a period of acceleration in their forward
rate of spread (and intensity) until such time as they reach a plateau or steady-state condition
(McAlpine and Wakimoto 1991) for the prevailing burning conditions (Fig. 15). This may take
only about 10 minutes in grasslands but perhaps 30 minutes or more in forests (Brown and Davis
1973) depending on the variations in wind direction. Table 4 has been prepared on the basis of an
available surface fuel load of 15 t/ha which would be typical for most forest fires; in exotic pine
plantations this would most likely occur according to the Buildup Index (BUI) component of the
Fire Weather Index (FWI) System (Van Wagner 1987) at a value of around 60 (Forestry Canada
Fire Danger Group 1992). Forward spread rates of 150, 300, 600, and 1200 m/h for surface fires in
mature stands (where the height to the base of the green crown layer would be greater than 10 m)
would in all likelihood occur according to the Initial Spread Index (ISI) component of the FWI
System at values of 7, 10, 15, and 26, respectively (Forestry Canada Fire Danger Group 1992); ISIs
of 2, 3, 5, and 7, respectively, would be required to achieve equivalent rates of spread in grasslands
assuming a 100% degree of curing. The formation of crown fires in exotic pine plantations pruned
to 2.4, 4, and 6 m would take place at intensities of 1065, 2291, and 4209 kW/m respectively
(Alexander 1988). For grass fires, maximum surface fuel loads would be considerably lower
(c. 3.5 t/ha) but potential spread rates would generally be much higher for a given set of burning
conditions, assuming a high degree of curing. For example, to achieve an intensity of 4000 kW/m
or greater, a surface fire in grasslands would have to advance at a rate of at least 2286 m/h whereas
in an exotic pine plantation this same level of intensity could be achieved at a rate of spread of
533 m/h.

Figure 15. Mathematical representation for the theoretical acceleration in forward rate of fire spread,
R = RSSe -aT (after Cheney 1981).
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Some Suggestions for Forest and Rural Fire Managers

The opportunities for managing wildland fuels in New Zealand to reduce the chances of a wildfire
disaster are somewhat more limited in comparison to say Australia where, in many areas, fuel
reduction burning is designed to keep fuel loads at a certain level based on potential spread rates as
determined from an analysis of fire danger records (e.g., Gill 1986). Regardless of this fact, the
necessity for establishing and maintaining the capability for detection of wildfires at the earliest
possible moment and prompt effective initial attack constitute the cornerstone of any fire management
organisation (Byram 1948; Macleod 1964); a proper balance must obviously be struck between
these two activities in terms of cost effectiveness (Martell 1982; Kourtz 1987b).

In my view, the application of fire behaviour knowledge to improving forest and rural fire protection
in New Zealand has for far too long lagged behind what might be considered a preoccupation with
equipment development. In the following section, I offer some possible courses of action designed
to remedy this situation.

An awareness or appreciation of fire behaviour should form an integral part of the training programme
at all levels of an organisation from the firefighter up through to the fire boss, as well as principal
rural fire officers and contractors (e.g., helicopter and fixed-wing pilots, bulldozer operators). In
addition to conventional classroom instruction, controlled burns, simulated fire exercises, and Wajax
pump competitions are frequently cited as valuable forms of training (Cooper 1986a, 1986b).
However, as Cooper (1986a) notes, “Training is best done live.” Lookouts should be tested
periodically with unscheduled smoke “bombs”. Fire suppression training, particularly for the initial
attack fire boss and supporting crews, needs to be more realistic with respect to the urgency of time
and initiating fire behaviour. I favour the idea of finding areas where free-burning point source fires
could be ignited and allowed to grow to perhaps 0.1–0.5 hectares in size before forces would arrive
on the scene (e.g., Burrows et al. 1988). These situations would also afford the opportunity to
document resource production rates in relation to actual wildfire conditions (e.g., Quintilio et al.
1990; Murphy et al. 1991). This concept of real simulated wildfires is very appropriate in areas
which have a low fire incidence in general and/or in specific fuel types. In such cases, especially
after a succession of very mild fire seasons, complacency sets in and it’s very difficult to maintain
the “edge” in regard to initial attack efficiency.

Table 4. Simulation of the build-up in fire intensity with elapsed time since ignition for free-burning
fires originating from a single ignition source.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Elapsed “Steady state” head fire rate of spread (m/h)
time-“T” ----------------------------------------------------------------------------

(minutes) 150 300 600 1200
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

“T” Head fire Intensity at time “T” (kW/m)*

5 492 984 1968 3936
10 769 1538 3075 6150
20 1012 2024 4049 8098
40 1114 2227 4455 8910

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Maximum 1125 2250 4500 9000

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
* Assuming the head fire attains 90% of its final steady-state rate of spread after 30 minutes.
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All rural fire authorities in New Zealand are required to prepare a fire control plan and to update it
annually (Anon. 1991b). A cursory look at a few plans indicates that they could possibly benefit
from pre-attack planning (Dell 1972; Anon. 1978). Pre-attack planning is the process of collecting,
evaluating, and recording fire intelligence data in advance of fire occurrence for decision-making
purposes to increase the chances of successful fire suppression in initial attack and large fire situations
consistent with the fire management objectives for a given protection area. A pre-attack plan would
include information on fuel types and topographic conditions including access routes and travel
times, and water supply sources. It would also include information on existing and/or proposed
developments or improvements (e.g., helispots, forward command posts). The preparation of travel
time maps (cf. Van Wagner 1965) would be an extremely valuable aid for fire control planning.

It should be obvious from Table 4 that in certain instances fire suppression forces are incapable of
controlling wildfires until burning conditions ameliorate, unless they just happen to be in the vicinity
of an initiating fire. It’s in these situations where fire prevention efforts should be at their maximum.
A very good example of this is the media blitz associated with a “total fire ban” day in south-eastern
Australia (Luke and McArthur 1978; Dawson 1991) or a “red flag” day in the U.S.A. (National Fire
Weather Advisory Group 1990). Anticipating these days of extreme fire behaviour potential as
occurred, for example, in the Nelson region on 5 February 1981 when the Hira Forest Fire made a
major run (Cooper 1986b), depends on using a fire danger rating system, such as the FWI System,
and having a daily fire weather forecasting service (Pouliot 1991). To my knowledge, fire danger
forecasting isn’t practised in New Zealand. It’s readily acknowledged that even with an adequate
network of fire weather stations and a computer-based information system with fuel and terrain
data (Barrows 1969; Kourtz 1984; Beck and Muller 1991; Lee and Anderson 1991) coupled with
fire weather forecasts, near real-time prediction of potential fire behaviour is still inherently difficult
(Cheney 1985c; Alexander and Andrews 1989). Furthermore, it must always be borne in mind that
such tools are designed to support operational decision-making — “A person, not the model, will
make the decision” (Andrews 1989).

Although guidelines for presuppression readiness (Table 5) have been formulated by most fire
authorities, rules for initial attack dispatching (Table 6) are virtually non-existent in New Zealand;
existing fire control plans should be periodically reviewed in light of new knowledge. Sufficient
information from operational experience and research elsewhere presently exists (e.g., Quintilio
and Anderson 1976; Potter et al. 1981; Martell et al. 1984a, 1984b; Gray and Janz 1985; Fried and

Table 5. Fire presuppression guidelines suggested for Fijian exotic pine plantations (adapted from
McArthur 1971).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Action Fire danger class
-----------------------------------------------------------------------
Low Moderate High V. High Extreme

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Primary lookouts manned - + + + +
Secondary lookouts manned - - - + +
Crews working on “close call” - - + + +
Water tanker crews at H.Q. - - - + +
All personnel and equipment - - - - +

available for immediate call
Weekend personnel requirements - - + + +

for standby or patrol
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Table 6. An example of a dispatcher’s guide for fires starting in radiata pine plantations in southern
New South Wales, Australia (adapted from Luke 1962).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Item Fire danger class
--------------------------------------------------------------------
Low Moderate High V. High Extreme

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Probable maximum fire behaviour

Head fire spread rate (m/hour) 80 160 302 704 1509+
Elliptical fire perimeter @ 1 hour (m) 282 543 805 1609 3520+
Elliptical fire area @ 1 hour (ha) 0.8 2.4 6.1 24.3 101+

Minimum suggested requirements for earliest possible initial attack
Number of personnel 2 4 6 12 30+
Water tankers 0 0 1 2 3+
Bulldozers 0 0 0 1 2+

Expected containment time (hours) 0.5 0.5 0.5 1–2 2–5
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 16. The fire suppression simulation model process (from Smith 1984).

Gilless 1989; Kourtz 1989; De Groot 1990; Lanoville and Mawdsley 1990; Hirsch 1991) to begin
modelling the process (Fig. 16), including considerations of cost-effectiveness (Fried and Gilless
1988; Wiitala 1992), that will suit New Zealand’s needs. Certainly, more refined guides to the
quantitative prediction of fire behaviour and resource productivity would be desirable; however,
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this should not deter someone from applying what is currently known! For example, a relationship
linking the ISI and BUI components of the FWI System to head fire rate of spread and fuel
consumption in old man’s gorse is desperately needed. Some rudimentary study of drop patterns
involving the Cresco 600 airtanker have been undertaken (R.M. Edwards, personal communication)
but much more work remains to be done on aerial fire suppression. The future of research on forest
and rural fire behaviour and its relation to fire suppression productivity in New Zealand will require
the financial support and cooperation of all concerned parties on a continuing basis.

Conclusions

Fire intensity or in turn flame size will dictate the limits of effectiveness for the various kinds of
resources employed in wildland fire fighting. Rate of fire spread will determine the quantities of
men and/or equipment required to contain a wildfire at a certain size or within a specified period of
time based on their individual production rates. The planning of an initial attack fire suppression
system should be based on the knowledge that all free-burning fires accelerate from the time flame
first appears until they reach their maximum rate of spread and intensity for the particular combination
of fuel, topography and weather conditions under which they are burning. In this respect, any
unnecessary delay between the detection of a fire and the commencement of initial attack operations
represents a crucial stage. Forest and rural fire authorities in New Zealand should be considering
ways of saving time between the moment of ignition and the start of effective work on the fire
perimeter.
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