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Thisstudy ispart of atwo-part study to investigate the potential for using national-scale climatic
information to make spatially explicit predictions of firerisk. Firerisk isgenerally defined asthe
probability of initial ignition of fires. In practice, this combines both the ignition sources, and the
fuel and weather conditionsthat allow a potential ignition to catch and spread. Firerisk was
modelled as a function of environmental and cultural factorsusing a modern spatial analysis
technique. Spatial predictions of firerisk were made for the Wellington Region and the North
Island, using generalized regression analysis and spatial prediction (GRASP).

A dataset of 1390 firesreported to the NRFA in the Wellington region over the decade 1989-1999
was used asthe observed fires. For the purposes of modelling from this dataset, firerisk was
defined asthe probability of one or more fires per hectare per decade. A number of spatial
predictor layerswere developed for this project, including five climatic, three landform, two
cultural variables and one landcover variable. Theresulting statistical models of firerisk were
imported into a geographic information system (GI'S) and used to make predictions of firerisk.

This project demonstrates the feasibility and power of GRASP methodology to make spatially
explicit predictions of fire risk. Using an incomplete data set confined to the Wellington Region,
this approach yielded predictions within this region that accord well with the overall occurrence
of fires. The results of this approach could be improved considerably by more comprehensive
information on fire locations and continued improvement in spatial information that may act as
spatial predictors.
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Executive Summary

Project and Client

Fire risk was modelled as a function of environmental and cultural factors using a modern
gpatial analysis technique. Spatial predictions of fire risk were made for the Wellington
Region and the North Island. Research was carried out by Landcare Research, Hamilton, in
between July 2000 and June 2001 for the National Rural Fire Authority (NRFA).

Objectives

To investigate the feasibility of modeling fire risk using a statistical approach
To make preliminary predictions of fire risk
To highlight the strengths and weaknesses of existing data

M ethods

We used generalized regression analysis and spatial prediction (GRASP) to spatially predict
fire risk in the Wellington region.

A dataset of fires reported to the NRFA in the Wellington region over the decade 1989-1999
was used as the observed fires. For the purposes of modelling from this dataset, fire risk was
defined as the probability of one or more fires per hectare per decade.

A number of spatia predictor layers were developed for this project, including five climatic,
three landform, two cultural variables and one landcover variable.

Modern regression analysis was used to establish the observed relationships between fire risk
and environmental and cultural variables. The resulting statistical models of fire risk were
imported into a geographic information system (GIS) and used to make predictions of fire risk
for the Wellington region. The models developed for the Wellington region were then used to
extrapolate fire risk to the entire North Island.

Results

The dataset included 1390 fires, of which 725 had a useable spatial location and were
included in the analyses. These 725 fires were at 635 locations (Figure 1). Three variables
were found to be significant predictors of fire risk for the Wellington region. These variables
were mean annual temperature, human density, and distance to the closest road (Figure 2).

The regression approach provided a significant model of fire risk (Figure 4). Based on this

model, the probability of fire increased as mean annual temperature increased. The effect of
distance from road is a consistent decrease with increased distance. The effect of human

Landcare Research



density increases to moderately high densities, declining at the highest densities. The relative
contributions of each significant explanatory variable to the regression model are shown in
Figure 5. Distance to road is the most important variable, with temperature and human
density showing similar, but lower importance.

The predicted probability of one or more fires is shown for the Wellington region in Figure 6.
This prediction has an overall mean very close to that expected from the number of fires and
the size of the Wellington region. This prediction is extrapolated to the entire North Island
(Figure 7).

Conclusions

This project demonstrates the feasibility and power of GRASP methodology to make
spatialy explicit predictions of fire risk.

Using an incomplete data set confined to the Wellington Region, this approach yielded
predictions within this region that accord well with the overall occurrence of fires.

The results of this approach could be improved considerably by more comprehensive
information on fire locations and continued improvement in spatial information that
may act as spatial predictors.

The advantages to fire management of this approach to the prediction of fire risk management
are several, including:

1) Point locations of fires are combined with spatial information to produce spatially
explicit predictions of firerisk (e.g., Figures 6 and 7).

2) Relationships between fire risk and environmental or cultura fire factors and their
relative importance are determined (Figures 4 and 5). Since individuals
experience phenomena at more local scales, these statistical analyses over large
gpatial scales play an important role in understanding the factors that influence fire
risk at regional or national scales.

3) Datarequirements and deficiencies can be highlighted. This can lead to much
more focused efforts to provide data needed for fire management, resulting in huge
potential gainsin the efficiency of data reporting and collecting.

Recommendations

This study highlights the need for continued improvement in the underlying information,
especially the development of a coherent database on the spatial distribution of fires and their
characteristics, as well as on the development of spatia information that will predict these
fires. Continued investment in improving both sorts of information will substantially improve
the ability of this approach to predict firerisk.

While this study employed a purely spatial analysis using average climatic conditions, a more
sophisticated analysis could utilize a spatio-temporal analysis of both the locations of fires,
and the climatic conditions at the time of the fire. Such an approach would have major
advantages, since it would produce a data-defined, spatio-temporal model that could predict a
dynamic pattern of fire risk across the landscape that would depend on local, current weather
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conditions and could be used to highlight both specific locations and specific climate
conditions leading to high fire risk.

1. I ntroduction

This study is part of a two-part study to investigate the potential for using national-scale
climatic information to make spatially explicit predictions of firerisk. Firerisk is generaly
defined as the probability of initial ignition of fires. In practice, this combines both the
ignition sources, and the fuel and weather conditions that alow a potential ignition to catch
and spread. By nature, fire locations will be highly stochastic and generaly rare.

The underlying climatic information and spatial modeling techniques have been developed in
a coordinated program to capture large-scale ecosystem patterns by combining spatial
surfaces of climate and landform with biotic information. Environmental domains
(Leathwick et a. 2001) have been used as an ecosystem classification and are currently being
implemented nationally in conjunction with the Ministry for the Environment Environmental
Performance Indicators Programme.

Climatic and landform factors that influence natural ecosystems patterns aso influence the
human use of ecosystems. In addition, they influence many risk factors, such as erosion and
pollution, as well as disturbances, such as landdlips, storms and fires. Fire can, of course, be
either a natural disturbance, a purposefully used tool, or a human and environmental hazard
resulting from human ignition sources. In this study, we predict fire risk using a statistical
approach that we have also used to predict species distributions and ecosystems
characteristics.

Such an approach is strictly data-defined, and the outcome will be only as good as the
underlying data. Here, we model fire risk as the probability of one or more fires per hectare
per decade. However, it is important to remember that what we are actually modeling and
predicting is the probability that there are one or more fires per hectare per decade that appear
in the dataset and have spatial locations. This distinction is important because the dataset
does not include all firesin the region in the decade, but is instead a sample of the total fire
population.

Unfortunately, this sample was not drawn with a defined sampling scheme, but instead results
from the vagaries of fire reporting and data collation. Therefore, we can really only make
informed guesses as to how the dataset represents the total fire population. However, we do
know some of the characteristics of the dataset. For afire to end up in this dataset, several
events had to occur:
- Thefire was responded to by the local fire authority (fires attended by the Fire Service

are NOT included in this dataset);

The fire was reported by the local authority to the NRFA;

The spatia location (grid coordinates) of the fire was reported.

While there is no information that alows us to estimate the probabilities of the first two
events occurring, the probability of the third event occurring can be estimated by the
proportion of firesin the dataset that have spatial locations. Thisis reported in the Results
section.
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The spatia predictors used in this study include human population density from census data,
road distributions, and climatic surfaces developed for the national domains implementation
(Leathwick, unpublished ms.).

2. M ethods

A dataset of fires provided by the NRFA was used in these analyses. This database consisted
of firesin the Wellington Region reported to the NRFA in the 10-year period 1989-1999.
Only those fires with spatial locations were used in these analyses.

Fire risk was modelled as the probability of one or more fires per hectare per decade. While
the population of fires that the data represent is subject to question (see Introduction and
Discussion sections), the data were treated as if they were all the fires in this population. A
1% uniform random sample of 1 ha squares (pixels) across the region (atotal of 8051 pixels)
were chosen as non-fire locations, with no attempt made to exclude the rare pixels with fire
events. These points were included as fires and non-fire points in the analyses. Each point
was weighted according to the inverse of the probability of it being chosen. For fire locations,
thiswas 1/1. For non-fire locations, this was (805100-635)/8051 = 99.92.

For both fire and non-fire points, the points were overlain onto environmental predictors,
resulting in estimates of environmental predictors for each point. The probability of one or
more fires was modelled as a multiple logistic regression using Generalized Additive Models
(GAMs) in Generalized Regression Analysis and Spatial Prediction (GRASP) (Lehmann, et
al. 2001) to model the relationships between the presence of fires and environmental
variables. The final model was chosen using backwards, stepwise regression, using AIC
criteria to select variables for inclusion in the model.

The following environmental variables were available for selection by the model process:
Climatic Variables:
Mean annua temperature
Ratio of rainfall to potential evapotranspiration,
Mean annual solar radiation
Vapor pressure deficit
Annual moisture deficit
Landform Variables:
Elevation
Slope
Aspect
Cultural Variables:
Distance to road
Human Density
Land Cover Variable:
Land Cover Data Base (LCDB).

A spatial prediction of fire risk was made by importing results from the statistical model into
a geographic information system (GIS). The final model was exported as a lookup table
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(Since GAMs are non-parametric models, they do not produce regression equations. Instead,
tables are used to approximate the smoothed additive contribution of each variable, e.g.,
Figure 4). The lookup tables were then imported into Arcview, and the predicted probability
of one or more fires was calculated for the entire North Island at 100 m resolution. To avoid
predicting outside the range of mean annual temperature (MAT) observed in the Wellington
Region, the values for MAT were truncated in the prediction grid to either the minimum or
maximum observed in the Wellington Region. Truncation was not required for human
density and distance to road, because the Wellington Region had contained the entire range of
those variables.
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Fig.1 The
fires with
spatial
locations used
in the analyses.
For modelling
purposes, this
was assumed
to be the entire
population of
rurd fires. See
text for a
discussion of
how this
assumption
may affect the
results, and
how the
reported fires
might relate to
total fires.

11

Landcare Research



12

Spatial Predictors of Fire Risk

Maam Annes Temparabure

Log (Distance 1o Bead + 35 jm)

Fig. 2 Spatial predictors selected as significant predictors of firerisk. The predictorsare: 1)
Mean Annual Temperature in degrees centigrade; 2) Human Density, in humans per knt and
transformed by adding one and taking the natural logarithm; and 3) Distance to roads mapped
on the NZM S 260 series, in metres, transformed by adding 25 and taking the natural
logarithm. All spatial predictors are mapped on a grid with 100-m pixels.

Landcare Research



13

3. Results

The dataset of reported fires included 1390 fires, of which 725 had a useable spatial location
and were included in the analyses. These 725 fires were at 635 locations (Figure 1). Fifty -
five locations had more than one fire, with most having only two, but with one location
having 11 fires. With approximately 805100 pixels (= hectares) in the Wellington study area,
the overall probability of one or more fires per pixel is 0.0007887.

Three variables were found to be significant predictors of fire risk for the Wellington region
(Figure 2). These variables were mean annual temperature, human density on a natural log
scale, and distance to road on a natural log scale. The histograms of these significant
predictors, and the distributions of fires across each variable are shown in Figure 3. Itisclear
that the distribution of firesis higher in higher mean annual temperatures, peaks and declines
with human densities, and decreases with distance from roads. These effects are also
apparent in the partial contribution of each of these variables to the GAM model in Figure 5.

The Generalized Additive Modél of fire risk is shown in Figure 4. The effect of temperature
on the model is a genera increase of the probability of fire at higher temperatures. The
probability of fires shows a consistent decrease with increased distance from roads. The
effect of human density peaks at intermediately high human densities, and declines at the
highest densities.

The relative contributions of each significant explanatory variable are shown in Figure 5.
Distance to road is the most important variable, with temperature and human density showing
similar amounts of deviance explained.

The predicted probability of one or more firesis shown for the Wellington region in Figure 6.
This prediction has an overall mean for the region of 0.000773, which is close to the mean
calculated non-spatialy as the (number of fires)/(number of pixels) (0.000789). The
minimum predicted value for the Wellington grid is 0.00000621, and the maximum is 0.0124.
A prediction formed from this regression is shown for the entire North Island in Figure 7.
The minimum predicted value for the North Island grid is 0.00000527, and the maximum is
0.0180, with an overall mean of 0.00130, which is ailmost twice the mean for the Wellington
Region alone. With 11 443 617 hectares in the North Island grid, this translates to 14 900
locations with one or more fires per decade for the North Island. In the Wellington dataset,
there were 725 fires at 635 locations, for an average of 1.14 fires per location. Furthermore,
these 725 fires with spatial locations represent a total of 1390 fires in the dataset, so that each
firein the dataset can be seen to represent 1390/725=1.92 fires. Thisleadsto an
extrapolation to the North Island of 14 900* 1.14*1.92 = 32 700 fires per decade, or 3270 fires
per year.
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Fig. 3 Histograms of predictor variablesincluded in model. The dark blue portion of the bar shows the non-fire points, and the red portion shows the fire
points. The solid line shows the proportion of the pixelsin each bar that have one or more fires relative to the overall average proportion of pixels with
fires, which is depicted by the horizontal dashed line. Thus, when the solid line is above the dashed line, fires are more common in that portion of the
environmental variable.
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4. Discussion

The results of this project demonstrate the power of GRASP methodology to make spatially
explicit predictions of fire risk by combining fire occurrence data with environmental and
cultural information. Using an incomplete dataset confined to the Wellington Region, this
approach yielded good predictions within this region. Even when extrapolated to the entire
North Idland, the predictions were not unreasonable.

The advantages of such an approach for fire management are several, including:
- Point locations of fires are combined with spatial information to produce spatialy

explicit predictions of firerisk (e.g., Figures 5 and 6).
Relationships between fire risk and environmental or cultural fire factors and their
relative importance are determined (Figures 4 and 5). Since individuals experience
phenomena at more local scales, these statistical analyses over large spatial scales play
an important role in understanding the factors that influence fire risk at regional or
national scales.
Data requirements and deficiencies can be highlighted. This can lead to much more
focused efforts to provide data needed for fire management, resulting in huge potential
gainsin the efficiency of data reporting and collecting.

This study highlights the need for continued improvement in the underlying information. The
information used in this pilot includes both the spatial locations of fires, as well as the spatial
predictors, such as the climatic and landform surfaces and cultural information. Continued
investment in improving information on both fires and spatial predictors will substantially
improve the results gained from implementing this approach.

There is an unknown bias in the predictions based on the potential biases in the fire location
data noted in the Introduction. In the present study, we can only say that what we are

actually predicting is not fire risk per se, but is instead the probability that afire is reported in
our database and has a spatial location. However, thisisinsufficient for wider purposes, and
the bias eventually needs to be understood or corrected. It is possibleto gain an
understanding of this bias by an analysis of the factors that contribute to the steps that lead up
to afire being reported to the NRFA with a spatial location. However, a much better solution
isto develop data reporting and capturing systems that provide either complete or
representative records of the fires across New Zealand.

Of the variables chosen by the stepwise process, the two factors relating to human fire risk are
most easily interpretable. Human sources of ignition are a primary contributor to fire risk.
Human density overall predicts the major patterns of human activity, while the distance to
closest road predicts the places where people are travelling and providing sources of ignition.
The fact that this method “chose” mean annual temperature as the only climatic variable to
include isinteresting. While predictions of fire risk often focus on moisture variables, the
importance of temperature in determining fire risk is entirely reasonable. Temperature is a
fundamental component of the speed of any chemical reaction, as well as the heat budget of
an exothermic reaction. In addition, temperature is an important component of both rainfall
and evaporation, and thus is correlated with the moisture balance variables used in this
analysis. Itisquitelikely that if the study area had encompassed a wider range of climatic
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conditions, such as drier rainshadow areas near Napier, Christchurch or Alexandra, or warm
moist areas such as Northland, there would have been an independent contribution of
moisture variables. However, this somewhat counterintuitive result is an example of the
strength of this approach to provide new insight into the behaviour of fires at large spatia
scales.

The predictions of fire risk produced here need to be treated with caution for two main
reasons. 1) the (unknown) bias of the sample points and 2) the extrapolation outside the
geographic and environmental range of the data. The degree to which the fires that end up in
the database represent the overall population of firesin the Wellington region is unknown.
Clearly, most urban fires are not included in this dataset, along with an unknown number of
rura fires. There could also be a bias produced by the fact that of the 1390 firesin the
dataset, only 725 had accurate spatial locations. If there was a pattern to the reporting of
gpatial locations of fires, for example if a particular fire authority in a particular area did not
report spatial locations, then these 725 fires will be a biased sample of the overall 1390 fires
in the database.

While modeling of fire risk can be done from a priori techniques in the absence of data on fire
risk, one has to question the rigour of such an approach. If the statistical models developed
here for the Wellington region are questionable when applied to the rest of the North Island,
then process-based models devel oped overseas must surely be even more questionable when
applied to New Zealand. Operating in a data-free environment provides the luxury of not
having anything to tell you that you are wrong! If there are no datain New Zealand, then
there is no basis for arigorous, empirical estimation of fire risk by any method. Fortunately,
there does not need to be a choice made between process-based models and statistical models.
Aslong as the foundation of data exists, it can be utilized in complementary ways.

While this study employed a purely spatial analysis using average climatic conditions, a more
sophisticated analysis could utilize a spatio-temporal analysis of both the locations of fires,
and the climatic conditions at the time of the fire. Such an approach would have important
advantages, since it would produce a data-defined, spatio-temporal model that could predict a
dynamic pattern of fire risk across the landscape that would depend upon current and recent
weather patterns. The drawbacks of such an approach are mainly the difficulties of accurately
estimating the appropriate weather variables for the time when and space where that each fire
occurred. Such an estimation would require climate station data across the entire region of
interest, measured at high temporal frequencies, all in a carefully prepared database with an
efficient algorithm for interpolating the weather conditions at the time and location of each
fire. The use of the resulting model to provide a dynamic prediction of fire risk would require
that current weather conditions be used to produce the surfaces of current weather conditions
needed to make the predictions.
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Fire Risk for Wellington Region

[ ] Welington region

» Fire locs for analysis
Probahbility of one or
mara fires per hectare
per decade (%)
I C- 0001
B 0.001 - 0.002
B 0.002-0.01

0.01-0.05

B 005 - 0.1
B C1-06
B CG-158

Fig. 6 Predicted firerisk for the Wellington region. Firerisk is given as the probability of
one or more fires per hectare per decade, and is multiplied by 100 to convert to percentages.
The observed fire locations from Figure 1 are shown for reference.
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Fire Risk for North Island

Legend
Probability of one or
more fires per hectare
per decade (%)

I O - 0.001

B 0.001 - 0.002
0.002 - 0.01
0.01-0.056

005-0,1
0.1-06
06-18

Fig. 7 Predicted firerisk for the entire North I1sland.
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