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1 Introduction

The ability to identify patterns and changes in fire eventshay occur is highly desirable, particularly if
they are unexpected. The frequency of different kinds ofdirents may change with the season, day of the
week, and time of day. Guy Fawkes day always sees the greatedter of fire events of any day of the year.
These are changes that can be modelled and are thereforetabézito some extent. Others, however, are less
predictable, such as an arsonist laying a series of firesaytmavertheless be important to detect such changes,
in order to prevent further occurrences. It may also be dblrto know whether an intervention, such as a
fire safety campaign, has led to a decline in fire events ofquéat types. The aim of this study is to explore
the extent to which data mining tools and statistical teghes might assist the Fire Service in detecting such
changes, and to illustrate the kinds of results that can bergdal from the data currently available.

This study explores three different scenarios in detaithHeas different questions of interest, and requires
different analyses. The three scenarios of interest are:

[1] Chimney fires — fluctuations in the rate of fires with chasmgetemperature and weather.

[2] Changes in fire rates in proximity to schools where the Nlmaland Fire Service has run its Firewise
programme.

[3] Detecting increases in the frequency of fires due to fyaaby individuals (arson) — the particular case
considered here is that of a known arsonist in Blenheim.

Data from 2004—-2007 was used for the analyses.

In the period 2004-2007, 2752 chimney fires were recordedein RKealand. Of these, 874 were in the
major cities, with Dunedin and Invercargill having the heghrecorded numbers (294 and 196 respectively).
Chimney fires are clearly seasonal, and the question ofesitdrere was how the frequency changes with
changes in temperature and weather, and, more particuhenther there is a threshold temperature below
which the frequency of chimney fires increases markedlyr& n@as also interest in investigating whether the
onsetof colder weather leads to a higher frequency of chimney,foesvhether a higher frequency at lower
temperatures is sustained throughout the winter.

The second scenario that was considered was the Firewiggapne. The Fire Service delivers fire
safety and prevention programmes to early childhood edwucaentres and primary schools throughout New
Zealand. A total of 5864 Firewise programmes were delivéettveen June 2004 and July 2008. Here the
interest is in whether it is possible to detect any changelearfrequency of fires after the delivery of these
programmes.

The third and final scenario that was considered was of a krmase of arson in Blenheim over the period
of the study. The question of interest here was whether tee &ttributed to this arsonist could be identified,
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and whether they could then be identified in real time. Thabasv soon after the onset of the arson events
could the pattern be detected?

Since all of the above three scenarios concern the fregeemtievents, using a Poisson-distributed re-
sponse variable appears to be most suitable. Four diffeypas of models are used below: generalised lin-
ear models (Dobson(1990), McCullagh and Nelder (1989)]s@y (1997)), generalized linear mixed-effects
models (Pinheiro and Bates (2000)), generalised additvaats (Hastie and Tibshirani (1999)), and decision
tree models (Breiman et al. (1984), Quinlan (1993), Witted Brank (2005)). These models are not applied
to all three scenarios nor are they described in the ordengabove. We have conducted the investigation in
a problem-oriented manner and thus the results are preseel@w in the order of increasing relevancy of the
models to the problem studied. These models are briefly dbesktin Section 4, with further details given later
with the results of their application to the fire data. We haweincluded all intermediate models that have
been fitted during our search for the best fit.

Although each of the three scenarios is concerned with plesshanges in the frequency of fires, each
of the scenarios is different in nature, has different kioflguestions associated with it and responds best to
different statistical or data mining techniques. One ofrttagor conclusions of this study is therefore that while
it may be possible to set up an automatic detection systemoutd need to be tailored to particular scenarios
of interest, and would need to be supplemented with stegistinalyses of patterns that might be detected.

Section 2 gives a description of the data with some discaosSection 3 gives a short literature review of
related work. Section 4 gives some background for the magsdd in the analysis. Section 5 discusses the
chimney data in detail, Section 6 the Firewise programmeSauation 7 the suspicious fires data. We conclude
with discussion and recommendations in Section 8.

We are most grateful to Neil Challands of the New Zealand Beevice for assistance in providing the
data and help with our understanding of the variables anddkeecollection process.

2 The data

The New Zealand Fire Service collects data for every fire evé@his study used data from 2004 to 2007
inclusive. A large number of data fields is available, witk thata fields recorded depending on the type of
incident. We have used the following fields in this study:-

CAD number

Date and time of the incident

Location:- gridpoint location, street, suburb and town

Whether the incident was rural or urban

Incident type

Cause of fire (group name and more detailed description)

Object ignited

The CAD number is a unique identifying number assigned tb esent. The time of the incident was recorded
to the nearest minute.

In addition to the Fire Service data, we also have weatheralatilable, recorded at weather stations in the
major cities. This was particularly useful for the analysishe chimney data. The weather data was recorded
at midday for each day in the period of the study, and inclutiedfire weather index, temperature, relative
humidity, wind speed and wind direction.



Data on the Firewise programme included the locations afcilbols where the Firewise programme was
delivered from 2004 onwards and the location of all earlydtiood centres where the Fire Prevention Pro-
gramme was delivered over the same period. Other fire spfetygntion advice sessions were also included.
The date of completion of each programme was given as welhasiamber of children to whom it was
delivered.

3 Literature review

3.1 Data mining

As a new technology, data mining has proved to be valuablanmemous practical applications (Vapnik (1998),
Hastie et al. (2001), Witten and Frank (2005), Felici andcedis (2007)). The majority of the problems stud-
ied in the data mining community can be categorized as remmesclassification, clustering, or link analysis.
The data sets involved are often very large in scale, withxdure of both numerical and categorical variables.
Popular models include decision trees, kernel methodgtipector machines, nearest-neighbours methods,
and neural networks. However, the problem of change poiettien does not belong in the above categories,
thus making popular data mining methods difficult to apphedily. In fact, there are not many studies on
change or change-point detection in the literature of datang. Among the few studies, Guralnik and Sri-
vastava (1999) investigated how to detect events from tenies data; Zeira et al. (2004) used classification
models for change detection; Takeuchi and Yamanishi (20063idered simultaneous detection of both out-
liers and change points; Ide and Tsuda (2007) proposed algewithm for change-point detection based on
principal component analysis using Krylov subspace. Furtfore, the book edited by Roddick and Hornsby
(2001) contains several papers on change-point detectidifferent situations.

3.2 Statistical models and change-point detection

Change-point detection has a long history of investigatiostatistics. Statistical models and hypothesis
tests usually have a narrower focus on specific problemsdbastata mining techniques, see e.g. Shewhart
(1931), Page (1954), Shiryaev (1963), Roberts (1966), Gen\{1987), Carlstein (1988), Basseville and Niki-
forov (1993), Lai (1995), Bai (1997), Mason et al. (1997),INau et al. (2001), Jones (2002), Frisen (2003),
Hawkins et al. (2003), Reynolds and Stoumbos (2004), Chal. ¢2006) and Akakpo (2008).

In this Fire Service project, we have studied a number oftified scenarios of interest. Since many
of these scenarios involve detecting changes in fire ra@serglized linear models, in particular Poisson
regression, have proved useful (McCullagh and Nelder (L98@Culloch (1997)) as has their extension
to nonparametric generalized additive models (Hastie ahdhirani (1990), Lin and Zhang (1999), Wood
(2008)). Embedding mixture models in these models may alsage a better fit to the data, as discussed in
Heckman and Singer (1984), Aitkin (1996), Tsodikov (2008) Zeng and Lin (2007).

There are several other established techniques for daegectiange points in data, not of all of which are
appropriate for this data set. Since the time of callout fiireaevent is recorded accurately, we could have
considered models in continuous time. However, less compledels based just on a count of the number
of fire events in a day were sufficient here. Simpler count rsodkso obviated the need to model diurnal
variation. The review below considers methods for bothrétgcand continuous data. We consider both the
detection of change points in historic data, and then, moedlyy the detection of change points in real time.

The problem of detecting change points in historic data bag been a question of interest. The simplest
problem is to identify a single change point from one knowrapeeter value to another. There is a considerable
step in complexity from identifying the location (whetherspace or time) of a single change in parameter
values, to the problem of identifying both the number of @epoints and their location. The possibility that
the parameters (such as the rates of a process) may thesiselkendom variables adds yet further complexity.



Most processes in time can exhibit change points of one kirghother, so there are many and various
underlying models where the change point detection proldenh interest. We illustrate this by citing some
recent works. Akakpo (2008) considers the problem of detgehultiple change points in sequences of inde-
pendent categorical data (such as, for example, DNA segsgnPolansky (2007) considers the problem of
detecting change-points in Markov chains (which can beghoof as sequences of dependent random vari-
ables) and Ge and Smyth (2000) use a (semi)-Markov hidderliniiited using the EM algorithm, to detect
change points in semiconductor manufacturing. The bepleazgression models in Chiu et al. (2006) join
linear segments (where rates are constant) with quadratiddy which give a smoother transition than piece-
wise linear models. They also permit the abruptness of #resition to be assessed. Bai (1994), Zeira (2004)
and Takeuchi and Yamanishi (2006) use classical time seraetels as the underlying model. Stochastic pro-
cesses such as Poisson processes (Akman and Raftery (K8B86gtt and Pollak (1996)), Levy processes and
Gaussian processes have also been the underlying modélsrige point detection problems.

A wide range of methods have also been used to detect chamngs (8®ee also Basseville and Nikiforov
(1993)). These include hypothesis testing (e.g. Akman aafteR/ (1986) and Siegmund (1988)), maximum
likelihood (e.g. Hinkley (1970), Worsley (1986) and Haw&i(2001)) and quasi-likelihood (Reed (1998)),
Bayesian methods (e.g. Raftery and Akman (1996) and Cdréih £1992)), least squares (Bai (1994) and Bai
(1997)), nonparametric methods (Carlstein (1998)) andutative sum approaches (see e.g. Galeano (2007)).

The papers cited above all apply the methods to histori¢aldelata. However, it may also be of interest
to detect changes in real time. This has long been importambdustrial process control and quality control
(see e.g. Roberts (1966), Gan (1994), Lai (1995), KenetPartidk (1996), Reynolds and Stoumbos (2004)),
but has also arisen in other contexts, such as real timetaetexd attacks on computer networks, increases in
disease incidence, changes in stock and share prices.sTaidifficult problem. There is a tradeoff between
the delay in detecting the change and generating too masg éérms. The problem of detecting the change
can also be viewed as an optimal stopping problem (Shirya@63)). Gal'chuk and Rozovskii (1971) and
Davis (1976) partially solved this problem for the Poissoocess, when the aim is to detect a change from
one known rate to another known rate, and it was then fullyexbby Peskir and Shiryaev (2002). Bayraktar
and Dayanik (2006) solved the problem when there is an exg@h@enalty for non-detection. In applications
the new rate is not usually a known constant, however, bubdora variable, and may need to be estimated
from the data. This problem has only recently been solveddpd (1997) and Beibel and Lerche (2003) for
Brownian motion and Bayraktar et al. (2006) for the Poissatgss. More recently, Dayanik and Goulding
(2007) have addressed this problem using Bayesian meth@d&r more general context with an underlying
hidden Markov model.

Change point methods are used in many other applicatiomsnimalelling of fire events, some of which
have already been mentioned. Three areas of applicatiom $een considerable research development re-
cently. The first, and possibly most relevant, is the probdéimosurveillance and the need for early detection
of outbreaks of disease associated with bioterrorism, gopfeventive measures can be undertaken. Sebas-
tiani and Mandl (2004) give a good introductory discussibthes area with an extensive bibliography. The
problem is to detect unusual clusters of disease, prefemaloeal time, rather than post the event. The com-
bined spatial and temporal elements here are similar teetfmsd in the problem of detecting a fire starter.
A second area of application is in the detection of changetpan Internet data, and particularly detection in
real time of attacks on service. However, the spatial aspexit always considered important in Internet data,
and the time scales of interest are orders of magnitude entaln for the Fire Service data. The third area
of application is in DNA sequencing, where the change pantar in space (the DNA sequence) rather than
time. Again, compared with the Fire Service data, this da¢possess both spatial and temporal dimensions.
There are many other important areas of application whicldeveot discuss further here — detecting change
points in financial data is a very obvious one.

We have not found much work on applying change point methodsé data, and it is mostly found
in the context of modelling forest fires. Of particular irgst to researchers in North America has been the
modelling of the time since the last fire. Reed (1998) usesigikelihood methods and backwards selection



to identify change points. A more recent paper (Reed (200€8% the Bayes Information Criterion to select
an appropriate model. However, the question addresseddrat¢he data available are very different from the
New Zealand Fire Service data. The aim is to estimate theatatesize of fires (whereas this data is already
known to us).

More generally, there is a very large body of literature cstdrical fire frequency in the context of forest
fire management. Estimation of wildfire risk is important forest fire management and assessing insurance
risk. Brillinger (2003) and Preisler et al. (2004) constmimbabilistic models to estimate wildfire risk. Peng
et al. (2005) use a spatial point process model to evaluateftbctiveness of the burning index in predicting
wildfire occurrence. Ryden and Rychlik (2006), on the othemd) use point process models to model the
occurrence of urban fires.

4 Models

In this section we describe the models used in the followedisns.

4.1 Poisson distribution
The Poisson distribution with ratehas probability function

Pt
f(ya )‘) =€ Aa>

fory =0,1,... andX > 0. Itis commonly used for modelling the number of occurrenuies rare event in,
say, a unit of time.

4.2 Poisson regression

The Poisson regression model is known as the log-linear matere the logarithm of the rate of the Poisson
response variable is assumed to have a linear relationsthifiive explanatory variables, that is,

log()‘) = ﬂO + ﬁlxl +-+ ﬁpxpa

where the responsgefor count data has the Poisson distribution with rate

4.3 Generalised additive models

Generalised additive models are an extension of geneddirssar models, in the sense that a term in the latter
is replaced by a function of variables. A very basic extemgdo replace an explanatory variable with a spline

function of the variable, and hence sophisticated nontityeean be used to describe the relationship between
the response and an explanatory variable. For Poissorsgegne the model looks something like

log(A\) = Bo + s1(z1) + - - - + sp(xp),

wheres, . .., s, are spline functions that need to be fitted to the data.
The complexity of a spline function is controlled by the paeder of the degrees of freedom. A spline
function with one degree of freedom is simply the varialdelitand its associated coefficient.



4.4 Mixed-effects Poisson regression

A mixed-effects model treats some coefficients as randonahblas, which thus have distributions, instead
of being held fixed as in a conventional statistical modelisTé usually because observations may belong
to distinct groups and those in the same group are likely twesthe same coefficient. Taking the Poisson
regression model as an example, the log-rate still has arlmationship with other predictor variables, but
the intercept is conditional on the group membership of asepkation:

log()‘j) = ﬂOj + ﬁlxl + - ﬁpx;m

where/; is the intercept for group. All 5y;’s together follow a distribution, whose family is usuallyep
chosen with a few unknown parameters.

A mixed-effects Poisson regression model can be fitted bhygusie R packagéme4 . In this package,
a normal distribution is always used for modelling a randeffects variable, with its mean and variance
determined from the data.

45 Decision trees

Decision trees are popular in the data mining community forialing solutions to difficult nonlinear regres-
sion and classification problems. They can be used to igemdif just existing patterns, but also changes in
patterns. They appear to be particularly useful for the Service dataset.

The basic idea of decision trees is to group observatioredbas their neighborhood and response values.
A decision tree recursively partitions the entire featyrace into many (hyper-)rectangular regions, and pos-
sesses a tree-like structure. The average or majority afesigonse variable values in each region is used to
make predictions for new observations that fall in the saeggon. Decision trees can be used for a range of
problems categorized by the type of response variable -gaatal (classification), continuous (regression),
and count data (Poisson regression) — but the structummikasior all of them.

Decision trees have several advantages over other datagriools, as well as conventional statistical
techniques. Their training is typically very fast and candome repeatedly. They deal well with different
types of covariates and nicely with missing values. Thesults are easily comprehensible and often shed
light on the problems studied. However, their accuracy efimtion is sometimes not as good as some other
data mining tools, such as neural networks and support vetdachines. They also have the disadvantage
of rapid segmentation of a data set, that is, a rapid decrieas® number of observations in each region,
and each pattern found is usually described by only a few mésential variables. It should also be noted
that a decision tree produced by an algorithm is usually ptitmal in the sense of a performance measure
(e.q., log-likelihood, squared errors, etc.), but finding toptimal tree”, if one ever exists, is computationally
intractable (or NP-hard, technically speaking).

5 Chimney fires

5.1 Problem and data

In this scenario, we study chimney fires, in particular theeeito which the frequency of chimney fires
fluctuates with changes in temperature and weather condjtand whether there is a temperature threshold
below which the frequency increases markedly.

A total of 2752 chimney fires occurred between 1 Jan 2004 and 31 Dec 2007 inZ¢aland, as plotted
in Figure 1. Six cities are included in the study: Aucklandi¢kland, Manukau, North Shore, Waitakere),
Hamilton, Wellington (Wellington, Lower Hutt), Christcheh, Dunedin and Invercargill. They have, respec-
tively, 106, 11, 109, 158, 294 and196 chimney fires over the four year period. In addition to theadatlected



by the New Zealand Fire Service, weather data collectedeate¢larest weather station to each city was made
available to us.
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Figure 1: Location of all chimney fires between 2004-2007 ewN ealand.

The daily frequencies of all the chimney fires occurring iesth six cities are plotted in Figure 2, from day
1 (1 Jan 2004) to day 1461 (31 Dec 2007) and the strong depemaentemperature is obvious: there are
more chimney fires during the winters than during the sumniBng obvious reason is that more fires are lit
in fireplaces on cold days, which increases the size of th@dpallation that may potentially lead to chimney
fires. Figure 3 plots the weekly frequencies of chimney fimrdtie three main South Island cities. A more
detailed plot of the seasonal variation is given in FigureMch plots the frequencies per week, summed over
the four years, for each of the South Island cities. Figurads the number of chimney fires by time of
day for each of the South Island cities. They occur most conynio the evenings, with a slight increase
around midmorning. Figure 6 shows the rate of chimney fireslpg vs. midday temperature for each of the
three cities considered, with Dunedin having the highest, rand Christchurch the lowest. At least in part
this reflects the fireplace fire ban in Christchurch and thayikigher number of chimneys in Dunedin than
Invercargill. We have attempted to accommodate this seeffiedt in Figure 7 where we have adjusted the
rates according to population. After this adjustment insgéhat Invercargill has a slightly higher chimney fire
rate. The fitted curves in these plots are so-cdtegss smoothers, which use locally-weighted polynomial
regression. They have the important feature of not beingyea#fected by outliers, but at the same time they
can underestimate, or be slow to respond to important trenthee data. The slope of the Invercargill fitted
curve appears to be largest at a temperature of around 1éefe@elsius. However, in these plots there is no
clear “critical temperature” at which there is a significamhp in the chimney fire rate.

Since there is no direct information or indeed any informain the data about the total number of fires
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Figure 3: Frequencies of chimney fires in the South Islandshietween 2004—-2007.

made in fireplaces in a day, it is very difficult to answer gioest regarding the change of the proportion of
chimney fires in the population of fireplace fires, namely tbleof a chimney fire in a household. Temperature
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Figure 7: Chimney fires per day per 100,000 population vspteature.

is closely correlated with both, and it appears impossibldistinguish them based purely on the information
that the data provides. We note also that it may be more agptepo use the evening temperature, rather than
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the midday temperature which was used here.
The data set we created contains the following variablesttwing the potentially relevant information:

city one ofAkl , Ham Wel, Chr, Dun andinv

pop population of the city

day day of the four years (ranging from 1 to 1461)

month month (ranging from 1 to 12)

year year (ranging from 1 to 4)

weekend indicator whether the day is a weekend day

fwi calculated fire weather index (FWI) at midday for each day
humid relative humidity at midday for each day

T temperature at midday for each day

D1 =T — T1, whereTi is the midday temperature aay i
D2 =T1-T2

count number of chimney fires on a given day in a given city

The inclusion of these variables (apart frolay ) is an attempt to account for the daily frequency of chimney
fires as much as possible. In particular, by includijand D2, we hope to detect whether the change of
temperature contributes to the occurrence of chimney fivede month , defined as having0.4375 days per
month, can help estimate seasonal effects. The varpipestores the population of each city, downloaded
from http://www.citypopulation.de/NewZealand-UA.html and rounded to the nearest thou-
sand. These population data were collected in the censwductad on 7 March 2006 by Statistics New
Zealand. The inclusion gbop is to provide an offset term in a Poisson model so that the &te can be
defined relative to a unit of the population (a thousand hane) hence different-sized cities can be treated
equally. A small random subset of the data set is given in AgpeA.1.

We have applied decision tree, generalised linear, andrgksed additive models to this data set.

5.2 Poisson decision trees

A plot of the Poisson decision tree built from the data is showFigure 8; see also Appendix A.2 for a
printed version. A decision tree has two different typesafes: internal and terminal nodes. At each internal
node, there is a splitting criterion, where an observasaent down the left branch if the criterion is satisfied,
or down the right branch if otherwise. The prediction for avr@bservation is made at the terminal node it
eventually reaches. For the Poisson decision tree showigurd=8, there ar@® terminal nodes. The three
figures at each terminal node obtained from the training masiens reaching the node are, respectively, the
estimated daily rate of chimney fires, the number of chimn@gfiand the number of observations (or days
here). The prediction for a new observation is made on this bhthese figures.

Decision tree models can outperform others in the situatiban relationships are irregular (e.g., non-
monotonic), but they are also known to be inefficient wheatrehships can be well approximated by simpler
models, e.g., Poisson regression models. The chimney Breaso appears to be a reasonably regular situa-
tion, so we expect the Poisson linear regression model tagesufficiently accurate estimates. On the other
hand, the decision tree model does provide a certain levieifofmation about the most relevant variables,
such asT, city andmonth . It also provides a different, and perhaps more intuitivay wf interpreting the
relationship between the daily rate of chimney fires and dipdematory variables.

The distinction of Hamilton from other cities is not reallypeoblem of the decision tree constructor or the
data quality. The reason is that the rate of chimney fires eéfivere is for a city, not per capita or per fireplace
fire. Hamilton is similar to Auckland in terms of climatic aditions, but has a much smaller population. The
other cities also have smaller populations than Aucklantithey have colder weather and thus larger fireplace
fire populations. This distinction can also be seen in therativo models, if the population is not taken into
account. The functionpart that we use for building a Poisson regression tree does peiaapo deal well
with an offset term included to account for the effect of tlopylation.
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Figure 8: Poisson decision tree for chimney fires in six sitie

5.3 Poisson regression

The fitted Poisson regression model that includes all versafexceptday ) is given in Appendix A.3. The
variablepop is used as an offset term, so the rate of chimney fires is defipedhousand people in the
population. Of these variablesyi andhumid are not significant; nor afi@1 andD2. The highly significant
month suggests that there exist seasonal effects, most likelyt@ueore fires lit in fireplaces during the
winters. Bothyear andweekend are only weakly significant. Unsurprisingly, is the most significant
variable. Also highly significant isity , where, using the-values, the six cities can be grouped into three
pairs due to their similarity: Auckland and Hamilton; Watiton and Christchurch; Dunedin and Invercargill.
This means that, under the same weather conditions that et explained by the model, the rates of
chimney fires per thousand population are still differertideen these cities. This appears to suggest that
people living in colder areas tend to light more fires in fiemgls under the same weather conditions.

In order to produce a model with better fit, the Akaike infotima criterion (AIC) (Akaike (1974)) is used
for variable selection; see Appendix A.3. The final selectediel has variables and an AIC value 6053,
reduced fromb058 of the above model. The AIC is known to be conservative, inséese that it tends to
produce a model with a greater number of parameters tharssege However, no model selection criterion
is entirely satisfactory. Here we use the AIC as a generalgguivhich should be fine, especially when a
reduction in its value is large (say, 5).

5.4 Generalised additive models

It is possible that the relationship between the log-ratehminney fires and other variables is not linear. To
find such a nonlinear relationship, generalised additivelet®are fitted to the data; see Appendix A.4. By
using spline functions witB degrees of freedoniumid is only very weakly significant to have a nonlinear
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relationship but it is extremely significant thithas a nonlinear effect. After taking these into account, the
value of AIC is further reduced ta047 from 5053 of the Poisson linear regression model.
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Figure 9: Partial effects of the variables used in the gdisechadditive model on the log-rate of chimney fires.

The partial effects of the explanatory variables and thaice-standard-error bands are plotted in Figure 9.
From the plot formonth , seasonal effects on the rate of chimney fires are quite abvihere are simply
more chimney fires during the winters, which is not surpgsinn addition, at a temperature of about 13
degrees Celsius there is clearly a change in the trend ofahelbpeffect of temperature on the log-rate of
chimney fires.

5.5 Summary and remarks

The main conclusions that we have drawn from the analysisepted above are as follows. The log-rate of
chimney fires per day per city is relatedTocity , month, weekend, year andhumid . It has a strong
nonlinear relationship witl and possibly a weak nonlinear relationship whtlmid . In general, the rate of
chimney fires increases asdecreases and there is clearly a seasonal effect. By irdirmglnonlinear effects
through the generalised additive model, a change can bdycfeand in the trend of the partial effect of
temperature on the log-rate of chimney fires.
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Our main intent here is to demonstrate the application of@ppate statistical models for answering prac-
tical questions of interest. Decision tree models are Blatior describing highly irregular relationships, but
this does not appear to be the case here. In contrast, Poesg@ssion models and generalised additive mod-
els are more appropriate here; both are able to find moreblasighat are relevant and provide more precise
descriptions of the relationship. Generalised additivelel®are more powerful than Poisson regression mod-
els, in that they can deal with nonlinear effects of indiabivariables and can thus provide answers one level
deeper.

The analysis above is unlikely to be exhaustive. For exaymptee informative variables can perhaps be
included initially or constructed from others.

6 Firewise programme

6.1 Problem and data

In this scenario, we examine whether there are any changhs fife rates in proximity to schools where the
New Zealand Fire Service has delivered the Firewise program

Mapgrid North
5400000 5600000 5800000 6000000 6200000 6400000 6600000
|

T T T T T
2200000 2400000 2600000 2800000 3000000

Mapgrid East

Figure 10: Locations of schools with Firewise programméveetd

We have removed early childhood education centres from #ta, decause it seems harder to define
a possible catchment area for these. Parents base thewoecbioearly childhood centre on many factors,
including but not limited to proximity (for instance, somarpnts choose to use centres that are close to their
workplaces rather than their homes). This I&f80 schools that had at least one Firewise programme delivered
between 1 Jan 2004 and 31 Dec 2007; the locations of theselsare plotted in Figure 10.
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Since the four-year data is unlikely to reveal any long-teffect, we focus our attention on a short-
term effect: whether there is a difference in the rates afcstire fires (of incident types 1101 and 1102) in
proximity to a school, between the 52-week period after treetion of a Firewise programme at the school
and any other period. The reason for using 52 weeks is to faftyove any potential correlation between the
delivered Firewise programme and the seasonal effecth#vat not been accounted for by other variables.
It also appears to make sense that the one-year period iagsewhere a short-term effect of the Firewise
programme, if any, may hopefully exist. We treat the circaligea that is centered about a school with radius
1 kilometer as its approximate proximity. The number of stinee fires inside this circle is then counted
for each of thel x 52 = 208 weeks (from 1 Jan 2004 to 26/Dec/2007). If a fire incident cated inside
more than one circle, it is counted only once for its neareisbsl and hence there is no duplicated counting.
This is equivalent to using the Voronoi tessellation inditke overlapping areas and the Voronoi tessellation
is independent of the fire incidents. Over the four year mkribere are in total0761 structure fires, out of
22440 across New Zealand, that occurred in the above-definedmres of the schools. This definition of
proximity is somewhat abritrary and the results may diffehis definition is changed.

For 1680 schools an@08 weeks, the data set that is created for this scenario is lguge and ha$680 x
208 = 349440 observations; see a small random subset given in Appendix B.contains the following
variables:

school a unique number for each school

year year (ranging from 1 to 4)

season one ofSpr, Sum Aut andWin

of indicator whether the week contains the Guy Fawkes day

stathol indicator whether the week contains any statutory holiday

firewise indicator whether a Firewise programme has been delivered
to the school and completed within the last 52 weeks

count number of structure fires occurred in the proximity of the

school in the week
We have applied both the usual and the mixed-effects Porggpassion models to this data set.

6.2 Poisson regression

The fitted Poisson regression model is given in Appendix B@&. the variables that are of less interegt,
season andyear are highly significant, whilstathol is insignificant. Of central interest fsewise
which is not significant. This suggests that overall theredsstatistical evidence that there is a difference
in the rate of house fires in the proximities of schools witthia 52-week period after the completion of a
Firewise programme at a school, as compared with the otherdse This does not neccessarily mean that
the Firewise programme does not have any effect, since tuerie be some effects that are too weak to be
detectable or there may exist some long-term effects whaamot be examined here. It may also be because
of the comparison we made, between the 52-week period &ecampletion of the programme and other
time periods, which is perhaps not the most appropriate wagtcting a short-term effect.

6.3 Mixed-effects Poisson regression

There is, however, a potential problem in applying the Rwsggression model to the data here. By using
the Poisson regression model above we assume that the wasddyof house fires for all school regions are
the same, if all the other variables take the same values.clear that this assumption does not really hold
in practice: schools can be different in many aspects, ssdatchment area, rural vs. urban, decile rating,
number of students, weather, geographic location and alatavironment. It would be very costly, even if
it were possible, to collect all these and other differdgimtgadata and, even if they are available, there is still
no guarantee that all differences among the schools have fregerly addressed. If one treashool

15



as a categorical variable, there will 1880 — 1 = 1679 new parameters adding to the model. Not only is
fitting a model with so many parameters almost computatipmafeasible, but the resulting model will also
be dramatically over-fitted (namely too many parameterd,ubes giving a bad fit).

A better alternative is to use the mixed-effects Poissoressgon model, where a statistical distribution is
introduced to describe the effects of these schools on thedt® of house fires. With the effects of different
schools accounted for in this way, a much better fitted moaiebe obtained and the significance levels of the
other variables more accurately assessed.

The fitted mixed-effects Poisson regression model is gineppendix B.3. The variablBrewise is
again insignificant. Note that the value of AIC is greatlyueed from97083 to 67634, suggesting that the
new fit is considerably better and that using a mixed-effewidel is a much better choice.

6.4 Summary and remarks

The models fitted to the data show no evidence of a declinauctste fires in a 1 kilometre radius around
a school during the 52 week period following the completidrad-irewise programme at that school. As
mentioned above, this does not rule out the possibility ahsan effect. We were only able to consider a
short term effect and there may be insufficient data to desect an effect if it is weak. We used a simple
approximation for the catchment area of a school, but thesdwt allow for differences in catchment areas
between rural and urban areas, for instance.

If any such decline were apparent, we would need to take gegatwith the interpretation. A decline
associated with the Firewise programme would not imply aaas. Ideally, a comparison should be made
between those schools that did not have the Firewise prageatelivered (the controls) and schools that did.
For instance, if there were evidence of a decline, it mighsibgply due to a general decline in structure fires
in proximity to schools.

Earlier data from a period before the Firewise programme dedisered could perhaps be used to study
both the short- and long-term effects. However, as notedegbibwould be necessary to consider schools both
with and without the programme. A practical difficulty is thhere have been changes in the way in which
data has been gathered over the years, so that earlier dateotiae easily comparable in any case.

7 Blenheim suspicious fires

7.1 Problem and data

In this scenario, we examine methods for detecting inceeas¢he frequency of fires possibly due to fire
laying by individuals (arson). The goal is to detect andas®lsuch events automatically from the collected
data of fire incidents.

The data we use here for illustrative purposes are the firdents that occurred in the area of Blenheim
between 1 Jan 2004 and 31 Dec 2007. It is known that a convactanhist had been laying vegetation fires
during the period between late October 2006 to early Jan2@@y in this area. It appears to us that these
intentionally-laid fires are most likely correlated to tedabeled “suspicious” by fire fighters on the spot.
Thus we have turned the original problem into one that detgtinges in the frequency of suspicious fires.

Unlike in the previous two scenarios, this problem is venyegular’. There may exist a large number
of potentially relevant variables, which may be of numdrmacategorical types and have missing values.
The frequency of suspicious fires is most unlikely to exhabitice, monotonic relationship with the variables
used. An arsonist may operate in certain time periods andrtaio neighborhoods and light fires of certain
types. Such an irregularity makes it very hard for tradilostatistical techniques, such as generalised linear
or additive models or univariate hypothesis testing, to/jg® nice solutions. Modern data mining techniques,
on the other hand, can be quite suitable for solving problémeshis. We demonstrate below how decision
tree models can be applied in this scenario.
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Figure 11: All fires in the area of Blenheim in 2004—2007 aadtpd, as shown by dots, while suspicious fires
are also marked by circles.

The analysis below includes all the fire incidents in 2004872 the rectangular region specified by
(MapgridE , MapgridN ) € (2582000, 2600000) x (5954000, 5979000).
This gives a total of04 fire incidents,171 of which are suspicious. To facilitate the analysis, theyfarther

divided into two data sets, one for those events that ocdun@004—-2005 and the other for those in 2006—
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2007. These data sets contain, respectivdlyg, and 386 fire incidents, of whicl80 and91 are suspicious.
These fires are plotted in Figure 11.
Both data sets thus created contain the following variables

MapgridE map grid east (as given in the original data set)

MapgridN map grid north (as given)

CurrentUrbanRural binary variable, indicating whether an urban (1) or
rural (0) area (as given)

AlarmMethodCode alarm method code (as given)

IncidentType type of incident (as given)

Heatsource heat source (as given)

Objlignited object ignited (as given)

time time of the daye [0, 24),

day day of the two-year period {1,2,...,731}

dayweek day of the weeki = Monday,. . ., 7 = Sunday)

type binary variable Susp = suspiciousQther = other type)

A small random subset from both data sets is given in Appe@dix Note that bottHeatsource and
Objlignited  contain missing values, which are representetNByoriginally coded0).

In the following, we demonstrate how decision trees can lpdieghto detect changes in the frequencies
of suspicious fires between 2004-2005 and 2006—-2007. Twoagpes are adopted below. One is to build a
classification tree from one data set. Since patterns {ridaad from one data set are not necessarily changes,
all found rules are tested against the observations fronottier data set that are covered by the same rules.
As a result, significant rules correspond to the differeredsieen the two data sets. The other approach is to
build a Poisson regression tree that directly describeslifferences between the two data sets. The second
approach is more efficient.

7.2 Pattern discovery

We begin by building a classification tree from the first daisasd test all the found rules against the second
data set; and then build another classification tree fronséfoend data set and test the found rules against
the first data set. This should help us find the differencesdsst the two data sets. It is also possible to use
Poisson regression trees, where daily or weekly countsed &ould be used as the response.

Classification trees are perhaps the most popular type odidadree to be used in practice. The goal
is to maximise the separation of observations that belordifterent classes (he®ther vs. Susp). The
resulting classification tree should then tend to have miffeproportions for a class at the terminal nodes,
where predictions are made for new observations based gmabpertions achieved from the training data.

The classification tree built from the first two years of datshown in Figure 12, with its more detailed text
version given in Appendix C.2. The tree identifiesituations (or rules) where the proportions of suspicious
fires should be distinguished. Each rule here correspondspth from the root of the tree to a terminal
node, where the proportions of different types of fires ateneded from the training data. These seven rules
are listed in Table 1, in the ascending order of their esweh@troportions of suspicious fires. These rules by
themselves are different, not only in terms of their estedgiroportions of suspicious fires, but also in terms
of the splitting criteria used along their paths down to aiieal node. While rules built from one data set shed
light on how the proportions of suspicious fires are relatedther variables, they are not directly indicating
differences from another data set, of course. Some rulesom@yoduced due to effects that are not of direct
interest here, e.g., seasonal effects. However, we canamentipese rules with the second two years of data.
Then patterns that are due to factors such as seasonasedifextid turn out to be insignificant. Any significant
rules that may remain can only be attibuted to the differsi@tween the two data sets.

The test we use is the likelihood ratio test for Poisson itistions; see Appendix D for details of the
test. As shown in Table 1, there is only one rule, Rule 6, thaemarkably significant, with a p-value of
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Figure 12: Classification tree built from fire incidents oced between 1 Jan 2004 and 31 Dec 2005 in the
Blenheim area

2004-2005 2006-2007
Proportion| Other Suspicious Other Suspicious P-value

Rulel| 0.000 38 0 27 2 0.098

Rule2| 0.057 116 7 102 3 0.28

Rule3| 0.068 41 3 50 3 0.64

Rule4| 0.250 9 3 11 6 0.54

Rule5| 0.300 21 9 39 11 0.058

Rule6| 0.804 10 41 55 53 0.000000017
Rule7| 0.850 3 17 11 13 0.067

Table 1: Rules built from data between 2004—-2005 and testeidta between 2006—2007

1.7 x 10~%. Nonetheless, the frequencies suggest that the signifidanargely due to more fires of type
“Other” in 20062007, rather than a change in the frequelsyspicious fires.

2004-2005 2006-2007

Proportion| Other Suspicious Other Suspicious P-value
Rulel| 0.000 13 0 9 0 0.69
Rule2| 0.040 106 9 97 4 0.31
Rule3| 0.116 69 37 129 17 0.0000022
Rule4| 0.200 30 9 44 11 0.24
Rule5| 0.682 16 8 14 30 0.0011
Rule6| 0.935 4 17 2 29 0.15

Table 2: Rules built from data between 2006—-2007 and tegfaitist data between 2004-2005

To be complete, we also need to find rules from the second datmd test them against the first data set.
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Figure 13: Classification tree built from fire incidents oced between 1 Jan 2006 and 31 Dec 2007 in the
Blenheim area

The decision tree built from the second two years of datagsvehin Figure 13, with its text version given in
Appendix C.2. There are in totélrules (namly6 terminal nodes) that are found from the data set, and are
listed in Table 2. Two of the rules are highly significant aad be reformatted as follows:

Rule 3: IF 66 < Heatsource
371 < day
THEN  type = Other
Rule 5: IF 66 < Heatsource < 75
day <= 371
7.15 <= time

IncidentType < 1406
THEN type = Susp

Rule 5 corresponds to a significant increase (about 22) irfirdegiency of suspicious fires and appears
to be directly related to the arson case. In particular,didates that a change, in terms of the proportion
of suspicious fires, has occurred during the day time (af@® @m), before day 371 (7/Jan/2007), with heat
source covering a range with “Cigarettes, Matches and @ahdind with incident types covering a range with
“Vegetation fires”. It possesses a very different chargstierfrom Rule 6, which has the highest proportion
of suspicious fires but specifies that the fires occurred Eti@:00am and 7:09am and is not significant as a
change. Rule 3 is also significant but corresponds to a deziaahe frequncy of suspicious fires, as well as
a substantial increase in the frequency of other fires, wbiddurred after day 371 (7/Jan/2007).

7.3 Direct change detection

Alternatively, we can build a single Poisson regression for detecting changes directly between the two
data sets. Since there does not appear to be an implemardgaéitable in R (or in other data mining software

packages), we have partially implemented this method aptieahit to the Blenheim data sets; see Appendix
C.3 for the tree produced.
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The main idea of this method is to search for the optimal tapdjtpoint in the value of each of the given
variables so that two given data sets differ most, in theesefshe likelihood ratio test (Appendix D). This
process is recursive, which divides the two data sets acwptd the found splitting criteria into smaller
and smaller subsets. It proceeds until some stopping iontés satisfied, such as when there are too few
observations left (less thar) here) or when the minimal p-value among all candidate sgslitarger than a
user-chosen threshold value(5 here). This gives a tree-structured model, which can badéugruned back
by using the AIC, for example, to avoid overfitting.

2004-2005 2006-2007

Other Suspicious Other Suspicious P-value
Rule 1 4 0 18 28 0.000000000030
Rule 2 23 14 63 1 0.000000076
Rule 3 1 7 12 3 0.0018
Rule 4 4 0 9 6 0.0058
Rule 5 90 14 66 4 0.0083
Rule 6 11 5 3 14 0.0096
Rule 7 22 9 23 1 0.025
Rule 8 10 9 5 2 0.038
Rule 9 4 0 6 4 0.051
Rule 10| 4 0 6 3 0.10
Rule 11| 42 13 59 14 0.23
Rule 12| 17 9 21 11 0.73
Rule 13| 6 0 4 0 0.82

Table 3: Rules found by direct detection of changes betweedata in 2004—-2005 and in 2006—-2007

All 13 rules that are found by the Poisson regression tree ard listhe ascending order of their p-values
in Table 3. The two most significant rules are as follows:

Rule 1. IF 1200 < IncidentType <= 1500
284 < day <= 384
MapgridE <= 2592500
MapgridN <= 5966004
THEN pvalue = 3.0le-11 [(4 0) (18 28)]

Rule 2. IF 1200 < IncidentType
434 < day <= 586
THEN pvalue = 7.59e-08 [(23 14) (63 1)]

Being the most significant, Rule 1 appears to directly retat¢he arson case. In particular, it sug-
gests that a change, in terms of fire frequencies, has occhatveen day 284 (11/0Oct/2006) and day 384
(19/Jan/2007), with incident types covering a range witeg®tation fires”, and in a particular neighbourhood
with MapgridE < 2592500 and MapgridN < 5966004. The change is due to a substantial increase in
suspicious fires (from to 28), as well as an increase in other fires (frarto 18). The28 suspicious fires in
2006-2007 that are covered by this rule are shown in Figure 14

Rule 2 specifies a situation where there is a decrease in theenof suspicious fires and yet an increase in
the number of other fires. This change took place between 8y1/Mar/2007) and day 586 (9/Aug/2007),
for incident types less than 1200 (thus excluding “Vegetafires”).

The general conclusions that are drawn here are similaragetin Section 7.2, but the rules found by
detecting changes directly both provide more detail aboeitdifferences between the two data sets and are
supported by much stronger statistical evidence.
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Figure 14: All fires in the area of Blenheim in 2006—2007 aatpld, as shown by dots, while suspicious fires
covered by Rule 1 are also marked by circles.

7.4 Summary and remarks

In this scenario, we have demonstrated how irregular cleoifge frequencies can be detected by using deci-
sion tree methodology. Two specific methods are developé@pplied to the data, with mutually supporting
conclusions obtained.

The second method can also be applied to build a tree for@aspifires only or for any number of types
of fires. Further improvements on the method and its impleatiem are possible. We have not found similar
methods in the literature to those presented above.

The direct change detection method makes use of the dataefimiently. It is possible that there may
be cases where the first method may fail to detect any signifcenge, but the second may still succeed in
doing so. The increased sensitivity of this method couldriecally important for providing early warning
through an online monitoring system.

8 Discussion and recommendations

8.1 Expertise required

A good knowledge of both the subject matter and statisticeeedded to both analyze the data and interpret
the results. Knowledge of the subject matter is needed trmgte the questions of interest and is useful in
selecting the most relevant variables for the problems umyestigation. It also helps reduce substantially
the total number of variables that will be used in a statdtinodel and increases the efficiency of statistical
estimation. The choice of an appropriate model dependsequtbstion of interest, and requires some statisti-
cal expertise. Some computer programming is always neédedy to format the data correctly. Beyond that
some familiarity with computer packages is needed, and it ev&n be necessary to implement the method
that appears to be most suitable.
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8.2 Statistical and data mining methodology

Both conventional statistical methods and modern datangitools can be useful for solving practical prob-
lems. Which sets of tools are more suitable depends on tledfisgeoblem under consideration. Conventional
statistical methods usually work better if their assumpgiare satisfied reasonably well, while data mining
methodology is often applied in settings where the databéxdome irregularity.

Although each of the three scenarios we considered is coedevith possible changes in the frequency of
fires, each scenario is different in nature, has differami&iof questions associated with it and responds best to
different statistical or data mining techniques. The fwg scenarios were best addressed using conventional
statistical techniques while the third responded well tatanining technique.

8.3 Software

Our investigation for this Fire Service project has beemiedrout exclusively in R (Ihaka and Gentleman,
1996; R Development Core Team, 2006). We believe it is thet aqgsropriate environment for solving these
problems. R is a free, open-source software package andliswpported by the international R development
core team. It contains an extensive collection of builttindtionalities and tools for data analysis and mod-
elling, as well as many add-on packages that are contridute@searchers around the world to implement
their latest research. Indeed, implementations in R carobed for almost all of the methods mentioned
above. It provides a nice programming environment, faedifor implementing new ideas quickly, and inter-
faces to other programming languages and software, if taesezquired. It also has many elegant graphical
functionalities that can help understand data betterogteschidden relationships and present results nicely.
An R programme can be easily run online at regular times, iamdomatic manner, and/or with options speci-
fied for different queries. R is very widely used, and is thef@mred computing environment for professional
statisticians.

Although we did not use them in this project, there are alsnesother data mining software packages that
may be potentially useful, depending on the problems undestigation. Among them, WEKA (Witten and
Frank (2005)) is an internationally-known, freely-avhlldata mining benchmarking package. Althoughiitis
implemented in the JAVA language, using the implementechods does not require knowledge of JAVA and
can be fully done through a user-friendly graphical integfaA large number of data mining methods have
been implemented in WEKA, perhaps more than any other sdegkemining software package.

There are also a number of commercial data mining softwackggges, including the better known ones:
Enterprise Miner of SAS, Insightful Miner of S-Plus, DatariMig Suite of Salford Systems, and RuleQuest.
While these systems usually contain implementatons of contyrused methods such as decision trees, neural
networks and support vector machines, they may also prepdeialised methods that have been developed
by well-known researchers, such as MARS and RandomForé&silfifrd Systems, and Cubist and GritBot in
RuleQuest.

Nevertheless, the major research effort in the data minamgneunity is on classification and regression
problems, where the response variable is either categanoesontinuous. For count data, as in the three
scenarios studied above, there appear to be very few implechenethods that can be used off the shelf to
answer questions that may arise from the Fire Service perspelt is therefore not entirely clear to us what
additional benefits these commercial packages can brirgetartalysis of these data.

8.4 Data

The data collected on fire events is extensive and very ddtailthis is a very rich data set. We experienced
some difficulties with the large numbers of categories aldd for some fields and, the possible overlap
between them, and the fact that different types of fire evaujgire different fields to be entered.
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The numbers of categories for some types of incident are |amyd the categories are not always mutually
exclusive. While some categories of fire appear easy toifglef@g. house fires), fires lit as a result of
deliberate fire laying are harder to identify, since theeesmveral categories that could cover this. Thus under
fire cause, deliberately lit fires can fall into several categs including “unlawful”, “legality not known”,
“suspicious”, and “not classified”.

Not all fire events have data recorded for each field. In pagrcmiscellaneous fires have missing entries
in many fields, including Heat Source and Object Ignited. ddianeous fires constituted 37.1% of the fire
events in 2003-2007 (35,345 of a total 95,303 events). Itievba desirable to have greater consistency in the
data fields recorded for each event. It may on occasions bgtitggto classify fires as miscellaneous, since
that then requires fewer additional fields to be entered.

8.5 Recommendations

In summary, we make the following recommendations:-

¢ If the New Zealand Fire Service were to implement an autandstection system, it would need to be
tailored to detect particular scenarios of interest, argpEmented with statistical analyses of patterns
that might be detected.

e The decision tree analysis developed here has potentia@dbtime detection of changes in the incidence
of fire events such as those associated with arson. We recodhthat further development work be
undertaken on this.

e We recommend using the statistical environment R for dasdyars. It is the preferred tool for profes-
sional statisticians, has the flexibility to allow non-gtard analyses and can easily be integrated with
data servers. In addition, it is free, open-source software

e The temporal and spatial data originating from the comjsedrdispatch system is effective for pattern
detection, but the large number of response options, mamnpich overlap or are potentially ambiguous,
may lead to loss of information. We recommend that furthersaderation be given to data collection
design.
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A Chimney fires — R output

A.1 Data

> city.chmn.fires[sort(sample(nrow(city.chmn.fires),

320

463

1043
1421
1859
2008
2071
2161
2329
2361
2554
2613
2884
2902
3328
4228
4384
4419
4934
4988
5527
5607
5644
5959
6346
6760
7438
8155
8320
8587

city pop day month year weekend

Akl 1208 320
Akl 1208 463
Akl 1208 1043
Akl 1208 1421

Ham
Ham
Ham
Ham
Ham
Ham
Ham
Ham
Ham
Ham
Wel
Wel
Chr
Chr
Chr
Chr
Chr
Chr
Chr
Dun
Dun
Dun
Inv
Inv
Inv
Inv

155 398
155 547
155 610
155 700
155 868
155 900
155 1093
155 1152
155 1423
155 1441
276 406
276 1306
361 1
361 36
361 551
361 605
361 1144
361 1224
361 1261
111 115
111 502
111 916
47 133
47 850
47 1015
47 1282

11

4

11
11

=

=
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AW
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FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE

21.14
3.12
1.35
4.95
0.32
0.00
12.12
15.70
5.86
3.48
21.69
1.34
45.77
5.52
2.57
2.99
9.83
2.42
8.37
1.68
0.47
0.07
2.06
0.76
2.55
0.00

fwi humid
FALSE 1.78
FALSE 10.80
FALSE 0.38
FALSE 5.08
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T D1
53 18.8 -1.5 0.0
51 255 35 -0.7
79 164 -6.7 3.5
64 201 11 -14
56 26.0 -1.0 2.0
56 10.0 -5.0 4.0
75 16.0 0.0 1.0
53 21.0 1.0 5.0
76 10.3 -2.3 1.5
95 10.0 2.2 -5.6
64 20.0 0.0 -1.0
54 22.0 -40 3.0
61 200 1.0 -1.0
77 200 0.0 0.0
61 25.0 2.0 -2.0
69 140 0.0 0.0
31 29.0 6.0 5.0
53 16.0 -8.0 3.0
89 10.3 -3.9 5.2
85 57 -6.0 1.0
56 20.0 4.0 -1.0
62 16.9 -21 4.0
77 8.0 1.0 -3.0
74 13.0 -1.0 0.0
64 93 -21 20
71 6.7 -5.6 -0.6
93 10.0 -2.0 1.0
77 13.0 -20 1.0
73 12.0 5.0 4.0
86 5.0 -1.0 -2.0

D2 count
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A.2 Poisson decision trees

> library(rpart)
> rpart(count © ., data=city.chmn.fires, method="poisson

n= 8766

node), split, n, deviance, yval
* denotes terminal node

1) root 8766 4300.0 0.0997
2) T>=11.9 6550 2130.0 0.0546
4) T>=16.9 3280 611.0 0.0249
8) month=1,2,3,4,5,10,11,12 3121 492.0 0.0204
9) month=6,7,8,9 159  89.5 0.1120 *
5) T< 16.9 3270 1410.0 0.0845
10) city=Ham 522  39.1 0.0094 *
11) city=Akl,Wel,Chr,Dun,Inv 2748 1300.0 0.0990
22) month=1,2,3,5,10,11,12 1537 545.0 0.0640
23) month=4,6,7,8,9 1211 712.0 0.1430 *
3) T< 11.9 2216 1720.0 0.2330
6) city=Akl,Ham,Wel,Chr,Inv 1681 1140.0 0.1800
12) city=Ham 164 29.8 0.0287 *
13) city=Akl,Wel,Chr,Inv 1517 1080.0 0.1960
7) city=Dun 535 501.0 0.3940 *
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A.3 Poisson regression

Using all covariates

> r = glm(count ~ . - day - pop, offset=log(pop), data=city.ch
family="poisson")
> summary(r)

mn.fires,

Call:
glm(formula = count ™ .
offset = log(pop))

- day - pop, family = "poisson"”, data = c ity.chmn.fires,

Deviance Residuals:
Min 1Q Median
-1.297 -0.291 -0.166

Max

3Q
-0.481 3.998
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.78670 0.52215 -16.83 < 2e-16 kk
cityHam -0.26029 0.31688 -0.82 0.41141

cityWel 1.32943 0.14136 9.40 < 2e-16 ik
cityChr 1.27437 0.14033 9.08 < 2e-16 ik
cityDun 2.97482 0.13398 22.20 < 2e-16 *oxk
citylnv 3.36725 0.14180 23.75 < 2e-16 okk
month2 0.16314 0.33938 0.48 0.63073

month3 0.48466 0.31047 1.56 0.11851

month4 0.89715 0.28883 3.11 0.00190 ok
month5 1.07054 0.28805 3.72 0.00020 ok
month6 1.40721 0.29454 4.78 1.8e-06 okk
month?7 1.36316 0.29527 4.62 3.9e-06 ok
month8 1.41084 0.28980 4.87 1.1e-06 ok
month9 1.36305 0.28162 4.84 1.3e-06 ok
month10 0.75024 0.29363 2.56 0.01062 *
month11 0.51057 0.30497 1.67 0.09410 .
month12 -0.13101 0.35034  -0.37 0.70843

year -0.07111 0.03023 -2.35 0.01865 *
weekendTRUE 0.17980 0.07257 2.48 0.01323 *
fwi 0.00361 0.00810 0.45 0.65563

humid -0.00349 0.00323  -1.08 0.28055

T -0.09735 0.01534  -6.35 2.2e-10 ok
D1 0.00219 0.01371 0.16 0.87287

D2 0.01085 0.01164 0.93 0.35103

Signif. codes: 0’ #*+ ' 0001 ='001' " 005'01""1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5605.1 on 8765 degrees of freedom
Residual deviance: 3390.8 on 8742 degrees of freedom
AIC: 5058

Number of Fisher Scoring iterations: 7
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Model selection using AIC

> step(r)

Start: AIC= 5058

count ~ (city + pop + day + month + year + weekend + fwi + humid +
T + D1 + D2) - day - pop

Df Deviance AIC

- D1 1 3391 5056
- fwi 1 3391 5056
- D2 1 3392 5057
- humid 1 3392 5057
<none> 3391 5058
- year 1 3396 5062
- weekend 1 3397 5062
-T 1 3431 5096
- month 11 3474 5119
- city 5 4287 5945

Step: AIC= 5056
count ~ city + month + year + weekend + fwi + humid + T + D2

Df Deviance AIC

- fwi 1 3391 5054
- D2 1 3392 5055
- humid 1 3392 5055
<none> 3391 5056
- year 1 3396 5060
- weekend 1 3397 5060
- T 1 3444 5107
- month 11 3490 5133
- City 5 4391 6046

Step: AIC= 5054
count ~ city + month + year + weekend + humid + T + D2

Df Deviance AIC

- D2 1 3392 5053
- humid 1 3393 5054
<none> 3391 5054
- year 1 3396 5058
- weekend 1 3397 5058
-T 1 3445 5106
- month 11 3490 5132
- city 5 4398 6052

Step: AIC= 5053
count ~ city + month + year + weekend + humid + T

Df Deviance AIC

- humid 1 3393 5053
<none> 3392 5053
- year 1 3398 5057
- weekend 1 3398 5057
- T 1 3445 5105
- month 11 3495 5135
- city 5 4404 6056

Step: AIC= 5053
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count ~ city + month + year + weekend + T

Df Deviance AIC

<none> 3393 5053
- year 1 3399 5056
- weekend 1 3399 5057
-T 1 3459 5116
- month 11 3506 5143
- city 5 4467 6116
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A.4 Generalised additive models

> library(gam)

> r = gam(count ~ s(T,df=3) + year + s(humid,df=3) + month + wee kend + city,
offset=log(pop), data=city.chmn.fires, family="poisso n")

> summary(r)

Call: gam(formula = count ~ s(T, df = 3) + year + s(humid, df = 3) +
month + weekend + city, family = "poisson”, data = city.chmn. fires,
offset = log(pop))

Deviance Residuals:

Min 1Q Median 3Q Max

-1.208 -0.488 -0.287 -0.154 4.036

(Dispersion Parameter for poisson family taken to be 1)

Null Deviance: 4298 on 8765 degrees of freedom
Residual Deviance: 3378 on 8741 degrees of freedom
AIC: 5047

Number of Local Scoring Iterations: 8
DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1
s(T, df = 3) 1 2 10.03 0.01
year 1
s(thumid, df = 3) 1 2 436 0.11
month 11
weekend 1
city 5
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B Firewise programme — R output

B.1 Data
For structure fires of incident types 1101 and 1102:
> all.fw[sort(sample(nrow(all.fw), 30)),]

school year season gf stathol firewise count
17408 84 Spr FALSE  FALSE FALSE
28872 139 Aut FALSE  FALSE FALSE
43153 208 Spr TRUE  FALSE TRUE
45326 218 Win FALSE  FALSE FALSE
64910 313 Aut FALSE  FALSE FALSE
72497 349 Sum FALSE  FALSE TRUE
75011 361 Win FALSE  FALSE TRUE
75790 365 Win FALSE  FALSE FALSE
90108 434 Spr FALSE  FALSE FALSE
98911 476 Sum FALSE  FALSE TRUE

101031 486
110672 533
112558 542

Spr FALSE FALSE FALSE
Aut FALSE FALSE FALSE
Win FALSE FALSE FALSE

131782 634 Aut FALSE FALSE TRUE
141140 679 Aut FALSE FALSE TRUE
154543 743 Sum FALSE FALSE TRUE

Aut FALSE FALSE FALSE
Sum FALSE FALSE FALSE
Spr FALSE FALSE FALSE
Sum FALSE TRUE TRUE
Aut FALSE FALSE FALSE
Aut FALSE FALSE FALSE
Win FALSE TRUE FALSE
Sum FALSE FALSE FALSE
Spr FALSE FALSE FALSE

197876 952
202442 974
227749 1095
259896 1250
273073 1313
278375 1339
280147 1347
290841 1399
205974 1423

299630 1441 Sum FALSE TRUE TRUE
313801 1509 Win FALSE FALSE TRUE
329736 1586 Sum FALSE FALSE FALSE
334978 1611 Spr FALSE FALSE TRUE

PNNWWBEANENAENAEAENNPAOWRRPWOWOWRNWWEANDW

348651 1677 Spr FALSE TRUE FALSE
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B.2 Poisson regression

> r = glm(count ~ . - school, family=poisson, data=all.fw)
> summary(r)

Call:
gim(formula = count ™ . - school, family = poisson, data = all.

Deviance Residuals:
Min 1Q Median 30 Max
-0.2894 -0.2546 -0.2469 -0.2407 6.4326

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.547513  0.030003 -118.240 < 2e-16 Hokk
year 0.023451 0.008686 2.700 0.00694 *x
seasonSum -0.084339 0.028973 -2.911 0.00360 *x
seasonAut 0.010104  0.028087 0.360 0.71906

seasonWin 0.120909 0.027312 4.427 9.56e-06 ok
ofTRUE 0.280670  0.064187 4.373 1.23e-05 Hokk

statholTRUE -0.051231  0.030561 -1.676 0.09368 .
firewiseTRUE -0.021838 0.021578 -1.012 0.31152

Signif. codes: 0 '’ #x ' 0001 =+=’'001' =+ 005°'01""1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 76335 on 349439 degrees of freedom
Residual deviance: 76246 on 349432 degrees of freedom
AIC: 97083

Number of Fisher Scoring iterations: 6

32

fw)



B.3 Mixed-effects Poisson regression

> library(Ime4)
> r = glmer(count © . - school + (1 | school), family=poisson, d
> summary(r)

Generalized linear mixed model fit by the Laplace approxima tion
Formula: count ™ . - school + (1 | school)
Data: all.fw

AIC BIC logLik deviance
67634 67731 -33808 67616
Random effects:
Groups Name Variance Std.Dev.
school (Intercept) 1.57 1.25
Number of obs: 349440, groups: school, 1680

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.21789 0.04448 -94.8 < 2e-16 *kk

year 0.02434 0.00873 2.8 0.0053 *k
seasonSum -0.08470 0.02913 -2.9 0.0036 *k
seasonAut 0.00947 0.02824 0.3 0.7373

seasonWin 0.12091 0.02746 4.4 1.1e-05 ok
ofTRUE 0.28071 0.06453 4.4 1.4e-05 ok
statholTRUE -0.05111 0.03072 -1.7 0.0962 .

firewiseTRUE -0.03734 0.02221 -1.7 0.0927 .

Signif. codes: 0 '’ #*x ' 0001 =’'001' =+ 005°'01""1

Correlation of Fixed Effects:
(Intr) year  sesnSm sesnAt sesnWn gfTRUE stTRUE
year -0.475
seasonSum -0.317 0.003
seasonAut -0.332 0.000 0.512
seasonWin -0.341 0.003 0.518 0.534
ofTRUE -0.146 -0.001 0.216 0.226 0.234
statholTRUE -0.042 -0.024 -0.131 -0.054 0.007 0.038
firewisTRUE -0.078 -0.140 0.017 0.029 -0.003 -0.001 -0.006

33

ata=all.fw)



C Blenheim suspicious fires - R output

C.1

Data

> blenheiml[sort(sample(nrow(blenheiml), 5)),]

19828
22427
28762
28821
43544

19828
22427
28762
28821
43544

MapgridE MapgridN CurrentUrbanRural AlarmMethodCode Inc

2588409 5965751 1
2586740 5972911 0
2590169 5964929 1
2593940 5973917 0
2589277 5971743 0
Heatsource Objlignited day time dayweek
NA NA 108 17.500
67 911 245 15.300
NA NA 676 1.683
99 723 704 8.617
67 911 555 9.050

> blenheim2[sort(sample(nrow(blenheim2), 5)),]

64734
64900
66143
73062
75205

64734
64900
66143
73062
75205

type

6 Other

3 Other

7 Susp

7 Other
5 Other

11
11
11
11
52

MapgridE MapgridN CurrentUrbanRural AlarmMethodCode Inc

2587836 5966137 1
2588460 5962670 1
2589938 5963648 1
2589623 5965200 1
2588260 5966055 1
Heatsource Objlignited day time dayweek
61 721 287 13.37
NA 811 672 18.38
NA NA 595 0.75
45 116 578 19.30
NA 912 650 21.28

type

6 Other
6 Other
6 Susp
3 Other
5 Other
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C.2 Pattern discovery and testing
> rpart(type ~ ., blenheiml, cp=0.05, method="class")

n= 318

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 318 80 Other (0.74843 0.25157)
2) Heatsource< 64.5 123 7 Other (0.94309 0.05691) *
3) Heatsource>=64.5 195 73 Other (0.62564 0.37436)
6) Heatsource>=70.5 38 0 Other (1.00000 0.00000)
7) Heatsource< 70.5 157 73 Other (0.53503 0.46497)
14) IncidentType>=1356 94 29 Other (0.69149 0.30851)
28) IncidentType< 1502 44 3 Other (0.93182 0.06818)
29) IncidentType>=1502 50 24 Susp (0.48000 0.52000)
58) day>=277.5 30 9 Other (0.70000 0.30000)
59) day< 277.5 20 3 Susp (0.15000 0.85000) *
15) IncidentType< 1356 63 19 Susp (0.30159 0.69841)
30) MapgridN>=5.969e+06 12 3 Other (0.75000 0.25000)
31) MapgridN< 5.969e+06 51 10 Susp (0.19608 0.80392)

> rpart(type ~ ., blenheim2, cp=0.05, method="class")

n= 386

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 386 91 Other (0.76425 0.23575)
2) Heatsource< 66.5 101 4 Other (0.96040 0.03960) *
3) Heatsource>=66.5 285 87 Other (0.69474 0.30526)
6) day>=371.5 146 17 Other (0.88356 0.11644) *
7) day< 371.5 139 69 Susp (0.49640 0.50360)
14) time>=7.15 108 41 Other (0.62037 0.37963)
28) Heatsource>=75 9 0 Other (1.00000 0.00000)
29) Heatsource< 75 99 41 Other (0.58586 0.41414)
58) IncidentType>=1406 55 11 Other (0.80000 0.20000)
59) IncidentType< 1406 44 14 Susp (0.31818 0.68182)
15) time< 7.15 31 2 Susp (0.06452 0.93548) *

35



C.3 Direct change detection

The following is the R output for the Poisson regression gt for detecting directly the differences between
two data sets. Each terminal node is marked by an asteriskafive additional values printed. The pair in
the first parenthesis are the frequencies of the ev@ite{ andSusp here) from the first data set, while the
pair in the second parenthesis are those from the secondetatBhe last value is the p-value of the likelihood
ratio test for heterogeneity between the rates of the firatsvia the two data sets under the circumstance
specified by the splitting criteria along the path.

> dtd(blenheiml, blenheim?2)

IncidentType <= 1200: (90 14) (66 4) 0.00827 *
IncidentType > 1200:
day <= 384:
| day <= 284:
| IncidentType <= 1502:
| | day <= 60.5: (10 9) (5 2) 0.0384 *
| | day > 60.5:
| | | IncidentType <= 1312: (11 5) (3 14) 0.00957 *
| | | IncidentType > 1312: (17 9) (21 11) 0.733 *
| IncidentType > 1502: (1 7) (12 3) 0.00182 *
ay > 284:

MapgridE <= 2592500:
MapgridN <= 5966984
| MapgridN <= 5966004:

I
I
| | | IncidentType <= 1500: (4 0) (18 28) 3.0le-11 *
| | | IncidentType > 1500: (4 0) (9 6) 0.00582 *
| | MapgridN > 5966004: (4 0) (6 4) 0.0511 *
| MapgridN > 5966984: (4 0) (6 3) 0.102 *
Mapgride > 2592500: (6 0) (4 0) 0.818 *
day > 384:
| day <= 586:
| | day <= 434: (22 9) (23 1) 0.0249 *
| | day > 434: (23 14) (63 1) 7.59e-08 *
| day > 586: (42 13) (59 14) 0.233 *
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D Likelihood ratio test

Let z; be the number of events in the first data set anthe that in the second data set with the same expo-
sure. Assume that;, i = 1,2, has the Poisson distribution with ratg with density f(x;; \;). For testing
homogeneity

Hy: A = Ay,

the likelihood ratio test statistic is given by

T+ T+
W =2 {log flarian) +log fazia) — log flars “5 ) ~ log fla ") }.

The statistid? has approximately?, the chi-square distribution withdegree of freedom.

If there arek types of events in both data sets, then the likelihood rasb $tatisticlV for testing ho-
mogeneity is the sum of the individual ones. It thus has apprately 3, the chi-square distribution with
degrees of freedom. For example, the most significant raléuyared by the Poisson regression tree that detects
differences directly, as given in Appendix C.3, Hds0) for the frequencies of other and suspicious fires in
the first data set and 8 28) for those in the second data set. The test statistic value is

W =2{log f(4;4) + log f(18;18) — log f(4;11) — log f(18;11)} +
2{log f(0;0) + log f(28;28) — log f(0;14) — log f(28;14)}
~ 48.45,

which hasy2 and hence gives thevalue3.01 x 101
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