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This study explores the extent to which data mining and statistical techniques might assist 
the Fire Service in detecting threshold and pattern changes in its spatio-temporal fire data. 
Three entirely different scenarios are investigated. A post-hoc search for patterns was made 
of fires of suspicious or unknown cause in an area where a subsequently convicted arsonist 
was known to be operating. The spatio-temporal occurrence of chimney fires was compared 
with local climate data looking for any threshold conditions which might trigger the 
seasonal changes in occurrence. Finally an attempt is made to measure the effectiveness of 
the Firewise programme, which involves fire fighters visiting schools to instruct students in 
fire safety. The before and after incidence of residential fires in proximity to schools visited 
is assessed to determine whether the programme has had any measurable effect. Different 
data mining techniques are applied to each scenario. 
 
The literature on change-point detection is reviewed and the applicability of identified 
techniques to real time fire data is discussed. Software options are discussed. The results 
suggest that fire data, especially time and location data, would be adequate for the purposes 
of detecting change-points but the problem under investigation must be clearly defined. 
Interpreted data about the fire must be accurate and unambiguous if it is to be of assistance 
in identifying change-points.   
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1 Introduction

The ability to identify patterns and changes in fire events asthey occur is highly desirable, particularly if
they are unexpected. The frequency of different kinds of fireevents may change with the season, day of the
week, and time of day. Guy Fawkes day always sees the greatestnumber of fire events of any day of the year.
These are changes that can be modelled and are therefore predictable to some extent. Others, however, are less
predictable, such as an arsonist laying a series of fires. It may nevertheless be important to detect such changes,
in order to prevent further occurrences. It may also be desirable to know whether an intervention, such as a
fire safety campaign, has led to a decline in fire events of particular types. The aim of this study is to explore
the extent to which data mining tools and statistical techniques might assist the Fire Service in detecting such
changes, and to illustrate the kinds of results that can be obtained from the data currently available.

This study explores three different scenarios in detail. Each has different questions of interest, and requires
different analyses. The three scenarios of interest are:

[1] Chimney fires – fluctuations in the rate of fires with changes in temperature and weather.

[2] Changes in fire rates in proximity to schools where the NewZealand Fire Service has run its Firewise
programme.

[3] Detecting increases in the frequency of fires due to fire laying by individuals (arson) – the particular case
considered here is that of a known arsonist in Blenheim.

Data from 2004–2007 was used for the analyses.
In the period 2004–2007, 2752 chimney fires were recorded in New Zealand. Of these, 874 were in the

major cities, with Dunedin and Invercargill having the highest recorded numbers (294 and 196 respectively).
Chimney fires are clearly seasonal, and the question of interest here was how the frequency changes with
changes in temperature and weather, and, more particularly, whether there is a threshold temperature below
which the frequency of chimney fires increases markedly. There was also interest in investigating whether the
onsetof colder weather leads to a higher frequency of chimney fires, or whether a higher frequency at lower
temperatures is sustained throughout the winter.

The second scenario that was considered was the Firewise programme. The Fire Service delivers fire
safety and prevention programmes to early childhood education centres and primary schools throughout New
Zealand. A total of 5864 Firewise programmes were deliveredbetween June 2004 and July 2008. Here the
interest is in whether it is possible to detect any changes inthe frequency of fires after the delivery of these
programmes.

The third and final scenario that was considered was of a knowncase of arson in Blenheim over the period
of the study. The question of interest here was whether the fires attributed to this arsonist could be identified,
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and whether they could then be identified in real time. That is, how soon after the onset of the arson events
could the pattern be detected?

Since all of the above three scenarios concern the frequencies of events, using a Poisson-distributed re-
sponse variable appears to be most suitable. Four differenttypes of models are used below: generalised lin-
ear models (Dobson(1990), McCullagh and Nelder (1989), Lindsey (1997)), generalized linear mixed-effects
models (Pinheiro and Bates (2000)), generalised additive models (Hastie and Tibshirani (1999)), and decision
tree models (Breiman et al. (1984), Quinlan (1993), Witten and Frank (2005)). These models are not applied
to all three scenarios nor are they described in the order given above. We have conducted the investigation in
a problem-oriented manner and thus the results are presented below in the order of increasing relevancy of the
models to the problem studied. These models are briefly described in Section 4, with further details given later
with the results of their application to the fire data. We havenot included all intermediate models that have
been fitted during our search for the best fit.

Although each of the three scenarios is concerned with possible changes in the frequency of fires, each
of the scenarios is different in nature, has different kindsof questions associated with it and responds best to
different statistical or data mining techniques. One of themajor conclusions of this study is therefore that while
it may be possible to set up an automatic detection system, itwould need to be tailored to particular scenarios
of interest, and would need to be supplemented with statistical analyses of patterns that might be detected.

Section 2 gives a description of the data with some discussion. Section 3 gives a short literature review of
related work. Section 4 gives some background for the modelsused in the analysis. Section 5 discusses the
chimney data in detail, Section 6 the Firewise programme andSection 7 the suspicious fires data. We conclude
with discussion and recommendations in Section 8.

We are most grateful to Neil Challands of the New Zealand FireService for assistance in providing the
data and help with our understanding of the variables and thedata collection process.

2 The data

The New Zealand Fire Service collects data for every fire event. This study used data from 2004 to 2007
inclusive. A large number of data fields is available, with the data fields recorded depending on the type of
incident. We have used the following fields in this study:-

• CAD number

• Date and time of the incident

• Location:- gridpoint location, street, suburb and town

• Whether the incident was rural or urban

• Incident type

• Cause of fire (group name and more detailed description)

• Object ignited

The CAD number is a unique identifying number assigned to each event. The time of the incident was recorded
to the nearest minute.

In addition to the Fire Service data, we also have weather data available, recorded at weather stations in the
major cities. This was particularly useful for the analysisof the chimney data. The weather data was recorded
at midday for each day in the period of the study, and includedthe fire weather index, temperature, relative
humidity, wind speed and wind direction.
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Data on the Firewise programme included the locations of allschools where the Firewise programme was
delivered from 2004 onwards and the location of all early childhood centres where the Fire Prevention Pro-
gramme was delivered over the same period. Other fire safety/prevention advice sessions were also included.
The date of completion of each programme was given as well as the number of children to whom it was
delivered.

3 Literature review

3.1 Data mining

As a new technology, data mining has proved to be valuable in numerous practical applications (Vapnik (1998),
Hastie et al. (2001), Witten and Frank (2005), Felici and Vercellis (2007)). The majority of the problems stud-
ied in the data mining community can be categorized as regression, classification, clustering, or link analysis.
The data sets involved are often very large in scale, with a mixture of both numerical and categorical variables.
Popular models include decision trees, kernel methods, support vector machines, nearest-neighbours methods,
and neural networks. However, the problem of change point detection does not belong in the above categories,
thus making popular data mining methods difficult to apply directly. In fact, there are not many studies on
change or change-point detection in the literature of data mining. Among the few studies, Guralnik and Sri-
vastava (1999) investigated how to detect events from time series data; Zeira et al. (2004) used classification
models for change detection; Takeuchi and Yamanishi (2006)considered simultaneous detection of both out-
liers and change points; Ide and Tsuda (2007) proposed a new algorithm for change-point detection based on
principal component analysis using Krylov subspace. Furthermore, the book edited by Roddick and Hornsby
(2001) contains several papers on change-point detection in different situations.

3.2 Statistical models and change-point detection

Change-point detection has a long history of investigationin statistics. Statistical models and hypothesis
tests usually have a narrower focus on specific problems thando data mining techniques, see e.g. Shewhart
(1931), Page (1954), Shiryaev (1963), Roberts (1966), Crowder (1987), Carlstein (1988), Basseville and Niki-
forov (1993), Lai (1995), Bai (1997), Mason et al. (1997), Molnau et al. (2001), Jones (2002), Frisen (2003),
Hawkins et al. (2003), Reynolds and Stoumbos (2004), Chiu etal. (2006) and Akakpo (2008).

In this Fire Service project, we have studied a number of identified scenarios of interest. Since many
of these scenarios involve detecting changes in fire rates, generalized linear models, in particular Poisson
regression, have proved useful (McCullagh and Nelder (1989), McCulloch (1997)) as has their extension
to nonparametric generalized additive models (Hastie and Tibshirani (1990), Lin and Zhang (1999), Wood
(2008)). Embedding mixture models in these models may also provide a better fit to the data, as discussed in
Heckman and Singer (1984), Aitkin (1996), Tsodikov (2003) and Zeng and Lin (2007).

There are several other established techniques for detecting change points in data, not of all of which are
appropriate for this data set. Since the time of callout for afire event is recorded accurately, we could have
considered models in continuous time. However, less complex models based just on a count of the number
of fire events in a day were sufficient here. Simpler count models also obviated the need to model diurnal
variation. The review below considers methods for both discrete and continuous data. We consider both the
detection of change points in historic data, and then, more briefly, the detection of change points in real time.

The problem of detecting change points in historic data has long been a question of interest. The simplest
problem is to identify a single change point from one known parameter value to another. There is a considerable
step in complexity from identifying the location (whether in space or time) of a single change in parameter
values, to the problem of identifying both the number of change points and their location. The possibility that
the parameters (such as the rates of a process) may themselves be random variables adds yet further complexity.
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Most processes in time can exhibit change points of one kind or another, so there are many and various
underlying models where the change point detection problemis of interest. We illustrate this by citing some
recent works. Akakpo (2008) considers the problem of detecting multiple change points in sequences of inde-
pendent categorical data (such as, for example, DNA sequences). Polansky (2007) considers the problem of
detecting change-points in Markov chains (which can be thought of as sequences of dependent random vari-
ables) and Ge and Smyth (2000) use a (semi)-Markov hidden model, fitted using the EM algorithm, to detect
change points in semiconductor manufacturing. The bent-cable regression models in Chiu et al. (2006) join
linear segments (where rates are constant) with quadratic bends, which give a smoother transition than piece-
wise linear models. They also permit the abruptness of the transition to be assessed. Bai (1994), Zeira (2004)
and Takeuchi and Yamanishi (2006) use classical time seriesmodels as the underlying model. Stochastic pro-
cesses such as Poisson processes (Akman and Raftery (1986),Kennett and Pollak (1996)), Levy processes and
Gaussian processes have also been the underlying models in change point detection problems.

A wide range of methods have also been used to detect change points (see also Basseville and Nikiforov
(1993)). These include hypothesis testing (e.g. Akman and Raftery (1986) and Siegmund (1988)), maximum
likelihood (e.g. Hinkley (1970), Worsley (1986) and Hawkins (2001)) and quasi-likelihood (Reed (1998)),
Bayesian methods (e.g. Raftery and Akman (1996) and Carlin et al. (1992)), least squares (Bai (1994) and Bai
(1997)), nonparametric methods (Carlstein (1998)) and cumulative sum approaches (see e.g. Galeano (2007)).

The papers cited above all apply the methods to historical sets of data. However, it may also be of interest
to detect changes in real time. This has long been important for industrial process control and quality control
(see e.g. Roberts (1966), Gan (1994), Lai (1995), Kenett andPollak (1996), Reynolds and Stoumbos (2004)),
but has also arisen in other contexts, such as real time detection of attacks on computer networks, increases in
disease incidence, changes in stock and share prices. This is a difficult problem. There is a tradeoff between
the delay in detecting the change and generating too many false alarms. The problem of detecting the change
can also be viewed as an optimal stopping problem (Shiryaev (1963)). Gal’chuk and Rozovskii (1971) and
Davis (1976) partially solved this problem for the Poisson process, when the aim is to detect a change from
one known rate to another known rate, and it was then fully solved by Peskir and Shiryaev (2002). Bayraktar
and Dayanik (2006) solved the problem when there is an exponential penalty for non-detection. In applications
the new rate is not usually a known constant, however, but a random variable, and may need to be estimated
from the data. This problem has only recently been solved by Beibel (1997) and Beibel and Lerche (2003) for
Brownian motion and Bayraktar et al. (2006) for the Poisson process. More recently, Dayanik and Goulding
(2007) have addressed this problem using Bayesian methods in a far more general context with an underlying
hidden Markov model.

Change point methods are used in many other applications than modelling of fire events, some of which
have already been mentioned. Three areas of application have seen considerable research development re-
cently. The first, and possibly most relevant, is the problemof biosurveillance and the need for early detection
of outbreaks of disease associated with bioterrorism, so that preventive measures can be undertaken. Sebas-
tiani and Mandl (2004) give a good introductory discussion of this area with an extensive bibliography. The
problem is to detect unusual clusters of disease, preferably in real time, rather than post the event. The com-
bined spatial and temporal elements here are similar to those found in the problem of detecting a fire starter.
A second area of application is in the detection of change points in Internet data, and particularly detection in
real time of attacks on service. However, the spatial aspectis not always considered important in Internet data,
and the time scales of interest are orders of magnitude smaller than for the Fire Service data. The third area
of application is in DNA sequencing, where the change pointsoccur in space (the DNA sequence) rather than
time. Again, compared with the Fire Service data, this does not possess both spatial and temporal dimensions.
There are many other important areas of application which wedo not discuss further here – detecting change
points in financial data is a very obvious one.

We have not found much work on applying change point methods to fire data, and it is mostly found
in the context of modelling forest fires. Of particular interest to researchers in North America has been the
modelling of the time since the last fire. Reed (1998) uses quasi-likelihood methods and backwards selection
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to identify change points. A more recent paper (Reed (2000))uses the Bayes Information Criterion to select
an appropriate model. However, the question addressed here, and the data available are very different from the
New Zealand Fire Service data. The aim is to estimate the dateand size of fires (whereas this data is already
known to us).

More generally, there is a very large body of literature on historical fire frequency in the context of forest
fire management. Estimation of wildfire risk is important forforest fire management and assessing insurance
risk. Brillinger (2003) and Preisler et al. (2004) construct probabilistic models to estimate wildfire risk. Peng
et al. (2005) use a spatial point process model to evaluate the effectiveness of the burning index in predicting
wildfire occurrence. Ryden and Rychlik (2006), on the other hand, use point process models to model the
occurrence of urban fires.

4 Models

In this section we describe the models used in the following sections.

4.1 Poisson distribution

The Poisson distribution with rateλ has probability function

f(y; λ) = e−λ λy

y!
,

for y = 0, 1, . . . andλ > 0. It is commonly used for modelling the number of occurrencesof a rare event in,
say, a unit of time.

4.2 Poisson regression

The Poisson regression model is known as the log-linear model, where the logarithm of the rate of the Poisson
response variable is assumed to have a linear relationship with the explanatory variables, that is,

log(λ) = β0 + β1x1 + · · · + βpxp,

where the responsey for count data has the Poisson distribution with rateλ.

4.3 Generalised additive models

Generalised additive models are an extension of generalised linear models, in the sense that a term in the latter
is replaced by a function of variables. A very basic extension is to replace an explanatory variable with a spline
function of the variable, and hence sophisticated nonlinearity can be used to describe the relationship between
the response and an explanatory variable. For Poisson regression, the model looks something like

log(λ) = β0 + s1(x1) + · · · + sp(xp),

wheres1, . . . , sp are spline functions that need to be fitted to the data.
The complexity of a spline function is controlled by the parameter of the degrees of freedom. A spline

function with one degree of freedom is simply the variable itself and its associated coefficient.
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4.4 Mixed-effects Poisson regression

A mixed-effects model treats some coefficients as random variables, which thus have distributions, instead
of being held fixed as in a conventional statistical model. This is usually because observations may belong
to distinct groups and those in the same group are likely to share the same coefficient. Taking the Poisson
regression model as an example, the log-rate still has a linear relationship with other predictor variables, but
the intercept is conditional on the group membership of an observation:

log(λj) = β0j + β1x1 + · · ·+ βpxp,

whereβ0j is the intercept for groupj. All β0j ’s together follow a distribution, whose family is usually pre-
chosen with a few unknown parameters.

A mixed-effects Poisson regression model can be fitted by using the R packagelme4 . In this package,
a normal distribution is always used for modelling a random-effects variable, with its mean and variance
determined from the data.

4.5 Decision trees

Decision trees are popular in the data mining community for providing solutions to difficult nonlinear regres-
sion and classification problems. They can be used to identify not just existing patterns, but also changes in
patterns. They appear to be particularly useful for the FireService dataset.

The basic idea of decision trees is to group observations based on their neighborhood and response values.
A decision tree recursively partitions the entire feature space into many (hyper-)rectangular regions, and pos-
sesses a tree-like structure. The average or majority of theresponse variable values in each region is used to
make predictions for new observations that fall in the same region. Decision trees can be used for a range of
problems categorized by the type of response variable – categorical (classification), continuous (regression),
and count data (Poisson regression) – but the structure is similar for all of them.

Decision trees have several advantages over other data mining tools, as well as conventional statistical
techniques. Their training is typically very fast and can bedone repeatedly. They deal well with different
types of covariates and nicely with missing values. Their results are easily comprehensible and often shed
light on the problems studied. However, their accuracy of prediction is sometimes not as good as some other
data mining tools, such as neural networks and support vector machines. They also have the disadvantage
of rapid segmentation of a data set, that is, a rapid decreasein the number of observations in each region,
and each pattern found is usually described by only a few mostinfluential variables. It should also be noted
that a decision tree produced by an algorithm is usually not optimal in the sense of a performance measure
(e.g., log-likelihood, squared errors, etc.), but finding the “optimal tree”, if one ever exists, is computationally
intractable (or NP-hard, technically speaking).

5 Chimney fires

5.1 Problem and data

In this scenario, we study chimney fires, in particular the extent to which the frequency of chimney fires
fluctuates with changes in temperature and weather conditions, and whether there is a temperature threshold
below which the frequency increases markedly.

A total of 2752 chimney fires occurred between 1 Jan 2004 and 31 Dec 2007 in NewZealand, as plotted
in Figure 1. Six cities are included in the study: Auckland (Auckland, Manukau, North Shore, Waitakere),
Hamilton, Wellington (Wellington, Lower Hutt), Christchurch, Dunedin and Invercargill. They have, respec-
tively, 106, 11, 109, 158, 294 and196 chimney fires over the four year period. In addition to the data collected
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by the New Zealand Fire Service, weather data collected at the nearest weather station to each city was made
available to us.
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Figure 1: Location of all chimney fires between 2004–2007 in New Zealand.

The daily frequencies of all the chimney fires occurring in these six cities are plotted in Figure 2, from day
1 (1 Jan 2004) to day 1461 (31 Dec 2007) and the strong dependence on temperature is obvious: there are
more chimney fires during the winters than during the summers. The obvious reason is that more fires are lit
in fireplaces on cold days, which increases the size of the firepopulation that may potentially lead to chimney
fires. Figure 3 plots the weekly frequencies of chimney fires for the three main South Island cities. A more
detailed plot of the seasonal variation is given in Figure 4 which plots the frequencies per week, summed over
the four years, for each of the South Island cities. Figure 5 shows the number of chimney fires by time of
day for each of the South Island cities. They occur most commonly in the evenings, with a slight increase
around midmorning. Figure 6 shows the rate of chimney fires per day vs. midday temperature for each of the
three cities considered, with Dunedin having the highest rate, and Christchurch the lowest. At least in part
this reflects the fireplace fire ban in Christchurch and the likely higher number of chimneys in Dunedin than
Invercargill. We have attempted to accommodate this secondeffect in Figure 7 where we have adjusted the
rates according to population. After this adjustment it seems that Invercargill has a slightly higher chimney fire
rate. The fitted curves in these plots are so-calledlowess smoothers, which use locally-weighted polynomial
regression. They have the important feature of not being overly affected by outliers, but at the same time they
can underestimate, or be slow to respond to important trendsin the data. The slope of the Invercargill fitted
curve appears to be largest at a temperature of around 11 degrees Celsius. However, in these plots there is no
clear “critical temperature” at which there is a significantjump in the chimney fire rate.

Since there is no direct information or indeed any information in the data about the total number of fires
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Figure 2: Daily frequencies of chimney fires in the six citiesbetween 2004–2007
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Figure 3: Frequencies of chimney fires in the South Island cities between 2004–2007.

made in fireplaces in a day, it is very difficult to answer questions regarding the change of the proportion of
chimney fires in the population of fireplace fires, namely the risk of a chimney fire in a household. Temperature
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Figure 4: Number of chimney fires per week, summed over 2004-2007.
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Figure 5: Number of chimney fires vs. hour of the day.
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Figure 6: Chimney fires per day vs. temperature.
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Figure 7: Chimney fires per day per 100,000 population vs. temperature.

is closely correlated with both, and it appears impossible to distinguish them based purely on the information
that the data provides. We note also that it may be more appropriate to use the evening temperature, rather than
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the midday temperature which was used here.
The data set we created contains the following variables forstoring the potentially relevant information:

city one ofAkl , Ham, Wel, Chr , Dun andInv
pop population of the city
day day of the four years (ranging from 1 to 1461)
month month (ranging from 1 to 12)
year year (ranging from 1 to 4)
weekend indicator whether the day is a weekend day
fwi calculated fire weather index (FWI) at midday for each day
humid relative humidity at midday for each day
T temperature at midday for each day
D1 = T − T1, whereTi is the midday temperature onday i
D2 = T1 − T2
count number of chimney fires on a given day in a given city

The inclusion of these variables (apart fromday ) is an attempt to account for the daily frequency of chimney
fires as much as possible. In particular, by includingD1 andD2, we hope to detect whether the change of
temperature contributes to the occurrence of chimney fires,while month , defined as having30.4375 days per
month, can help estimate seasonal effects. The variablepop stores the population of each city, downloaded
from http://www.citypopulation.de/NewZealand-UA.html and rounded to the nearest thou-
sand. These population data were collected in the census conducted on 7 March 2006 by Statistics New
Zealand. The inclusion ofpop is to provide an offset term in a Poisson model so that the fire rate can be
defined relative to a unit of the population (a thousand here)and hence different-sized cities can be treated
equally. A small random subset of the data set is given in Appendix A.1.

We have applied decision tree, generalised linear, and generalised additive models to this data set.

5.2 Poisson decision trees

A plot of the Poisson decision tree built from the data is shown in Figure 8; see also Appendix A.2 for a
printed version. A decision tree has two different types of nodes: internal and terminal nodes. At each internal
node, there is a splitting criterion, where an observation is sent down the left branch if the criterion is satisfied,
or down the right branch if otherwise. The prediction for a new observation is made at the terminal node it
eventually reaches. For the Poisson decision tree shown in Figure 8, there are8 terminal nodes. The three
figures at each terminal node obtained from the training observations reaching the node are, respectively, the
estimated daily rate of chimney fires, the number of chimney fires, and the number of observations (or days
here). The prediction for a new observation is made on the basis of these figures.

Decision tree models can outperform others in the situationwhen relationships are irregular (e.g., non-
monotonic), but they are also known to be inefficient when relationships can be well approximated by simpler
models, e.g., Poisson regression models. The chimney fire scenario appears to be a reasonably regular situa-
tion, so we expect the Poisson linear regression model to provide sufficiently accurate estimates. On the other
hand, the decision tree model does provide a certain level ofinformation about the most relevant variables,
such asT, city andmonth . It also provides a different, and perhaps more intuitive, way of interpreting the
relationship between the daily rate of chimney fires and the explanatory variables.

The distinction of Hamilton from other cities is not really aproblem of the decision tree constructor or the
data quality. The reason is that the rate of chimney fires defined here is for a city, not per capita or per fireplace
fire. Hamilton is similar to Auckland in terms of climatic conditions, but has a much smaller population. The
other cities also have smaller populations than Auckland, but they have colder weather and thus larger fireplace
fire populations. This distinction can also be seen in the other two models, if the population is not taken into
account. The functionrpart that we use for building a Poisson regression tree does not appear to deal well
with an offset term included to account for the effect of the population.
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Figure 8: Poisson decision tree for chimney fires in six cities

5.3 Poisson regression

The fitted Poisson regression model that includes all variables (exceptday ) is given in Appendix A.3. The
variablepop is used as an offset term, so the rate of chimney fires is definedper thousand people in the
population. Of these variables,fwi andhumid are not significant; nor areD1 andD2. The highly significant
month suggests that there exist seasonal effects, most likely dueto more fires lit in fireplaces during the
winters. Bothyear andweekend are only weakly significant. Unsurprisingly,T is the most significant
variable. Also highly significant iscity , where, using thez-values, the six cities can be grouped into three
pairs due to their similarity: Auckland and Hamilton; Wellington and Christchurch; Dunedin and Invercargill.
This means that, under the same weather conditions that havebeen explained by the model, the rates of
chimney fires per thousand population are still different between these cities. This appears to suggest that
people living in colder areas tend to light more fires in fireplaces under the same weather conditions.

In order to produce a model with better fit, the Akaike information criterion (AIC) (Akaike (1974)) is used
for variable selection; see Appendix A.3. The final selectedmodel has5 variables and an AIC value of5053,
reduced from5058 of the above model. The AIC is known to be conservative, in thesense that it tends to
produce a model with a greater number of parameters than necessary. However, no model selection criterion
is entirely satisfactory. Here we use the AIC as a general guide, which should be fine, especially when a
reduction in its value is large (say,≥ 5).

5.4 Generalised additive models

It is possible that the relationship between the log-rate ofchimney fires and other variables is not linear. To
find such a nonlinear relationship, generalised additive models are fitted to the data; see Appendix A.4. By
using spline functions with3 degrees of freedom,humid is only very weakly significant to have a nonlinear
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relationship but it is extremely significant thatT has a nonlinear effect. After taking these into account, the
value of AIC is further reduced to5047 from 5053 of the Poisson linear regression model.
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Figure 9: Partial effects of the variables used in the generalised additive model on the log-rate of chimney fires.

The partial effects of the explanatory variables and their twice-standard-error bands are plotted in Figure 9.
From the plot formonth , seasonal effects on the rate of chimney fires are quite obvious—there are simply
more chimney fires during the winters, which is not surprising. In addition, at a temperature of about 13
degrees Celsius there is clearly a change in the trend of the partial effect of temperature on the log-rate of
chimney fires.

5.5 Summary and remarks

The main conclusions that we have drawn from the analysis presented above are as follows. The log-rate of
chimney fires per day per city is related toT, city , month , weekend , year andhumid . It has a strong
nonlinear relationship withT and possibly a weak nonlinear relationship withhumid . In general, the rate of
chimney fires increases asT decreases and there is clearly a seasonal effect. By introducing nonlinear effects
through the generalised additive model, a change can be clearly found in the trend of the partial effect of
temperature on the log-rate of chimney fires.
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Our main intent here is to demonstrate the application of appropriate statistical models for answering prac-
tical questions of interest. Decision tree models are suitable for describing highly irregular relationships, but
this does not appear to be the case here. In contrast, Poissonregression models and generalised additive mod-
els are more appropriate here; both are able to find more variables that are relevant and provide more precise
descriptions of the relationship. Generalised additive models are more powerful than Poisson regression mod-
els, in that they can deal with nonlinear effects of individual variables and can thus provide answers one level
deeper.

The analysis above is unlikely to be exhaustive. For example, more informative variables can perhaps be
included initially or constructed from others.

6 Firewise programme

6.1 Problem and data

In this scenario, we examine whether there are any changes ofthe fire rates in proximity to schools where the
New Zealand Fire Service has delivered the Firewise programme.
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Figure 10: Locations of schools with Firewise programme delivered

We have removed early childhood education centres from the data, because it seems harder to define
a possible catchment area for these. Parents base their choice of early childhood centre on many factors,
including but not limited to proximity (for instance, some parents choose to use centres that are close to their
workplaces rather than their homes). This left1680 schools that had at least one Firewise programme delivered
between 1 Jan 2004 and 31 Dec 2007; the locations of these schools are plotted in Figure 10.
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Since the four-year data is unlikely to reveal any long-termeffect, we focus our attention on a short-
term effect: whether there is a difference in the rates of structure fires (of incident types 1101 and 1102) in
proximity to a school, between the 52-week period after the completion of a Firewise programme at the school
and any other period. The reason for using 52 weeks is to fullyremove any potential correlation between the
delivered Firewise programme and the seasonal effects thathave not been accounted for by other variables.
It also appears to make sense that the one-year period is perhaps where a short-term effect of the Firewise
programme, if any, may hopefully exist. We treat the circular area that is centered about a school with radius
1 kilometer as its approximate proximity. The number of structure fires inside this circle is then counted
for each of the4 × 52 = 208 weeks (from 1 Jan 2004 to 26/Dec/2007). If a fire incident is located inside
more than one circle, it is counted only once for its nearest school and hence there is no duplicated counting.
This is equivalent to using the Voronoi tessellation insidethe overlapping areas and the Voronoi tessellation
is independent of the fire incidents. Over the four year period, there are in total10761 structure fires, out of
22440 across New Zealand, that occurred in the above-defined proximities of the schools. This definition of
proximity is somewhat abritrary and the results may differ if this definition is changed.

For1680 schools and208 weeks, the data set that is created for this scenario is quitelarge and has1680 ×
208 = 349440 observations; see a small random subset given in Appendix B.1. It contains the following
variables:

school a unique number for each school
year year (ranging from 1 to 4)
season one ofSpr , Sum, Aut andWin
gf indicator whether the week contains the Guy Fawkes day
stathol indicator whether the week contains any statutory holiday
firewise indicator whether a Firewise programme has been delivered

to the school and completed within the last 52 weeks
count number of structure fires occurred in the proximity of the

school in the week

We have applied both the usual and the mixed-effects Poissonregression models to this data set.

6.2 Poisson regression

The fitted Poisson regression model is given in Appendix B.2.For the variables that are of less interest,gf ,
season andyear are highly significant, whilestathol is insignificant. Of central interest isfirewise ,
which is not significant. This suggests that overall there isno statistical evidence that there is a difference
in the rate of house fires in the proximities of schools withinthe 52-week period after the completion of a
Firewise programme at a school, as compared with the other periods. This does not neccessarily mean that
the Firewise programme does not have any effect, since therecould be some effects that are too weak to be
detectable or there may exist some long-term effects which can not be examined here. It may also be because
of the comparison we made, between the 52-week period after the completion of the programme and other
time periods, which is perhaps not the most appropriate way of detecting a short-term effect.

6.3 Mixed-effects Poisson regression

There is, however, a potential problem in applying the Poisson regression model to the data here. By using
the Poisson regression model above we assume that the weeklyrates of house fires for all school regions are
the same, if all the other variables take the same values. It is clear that this assumption does not really hold
in practice: schools can be different in many aspects, such as catchment area, rural vs. urban, decile rating,
number of students, weather, geographic location and natural environment. It would be very costly, even if
it were possible, to collect all these and other differentiating data and, even if they are available, there is still
no guarantee that all differences among the schools have been properly addressed. If one treatsschool
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as a categorical variable, there will be1680 − 1 = 1679 new parameters adding to the model. Not only is
fitting a model with so many parameters almost computationally infeasible, but the resulting model will also
be dramatically over-fitted (namely too many parameters used, thus giving a bad fit).

A better alternative is to use the mixed-effects Poisson regression model, where a statistical distribution is
introduced to describe the effects of these schools on the log-rate of house fires. With the effects of different
schools accounted for in this way, a much better fitted model can be obtained and the significance levels of the
other variables more accurately assessed.

The fitted mixed-effects Poisson regression model is given in Appendix B.3. The variablefirewise is
again insignificant. Note that the value of AIC is greatly reduced from97083 to 67634, suggesting that the
new fit is considerably better and that using a mixed-effectsmodel is a much better choice.

6.4 Summary and remarks

The models fitted to the data show no evidence of a decline in structure fires in a 1 kilometre radius around
a school during the 52 week period following the completion of a Firewise programme at that school. As
mentioned above, this does not rule out the possibility of such an effect. We were only able to consider a
short term effect and there may be insufficient data to detectsuch an effect if it is weak. We used a simple
approximation for the catchment area of a school, but this does not allow for differences in catchment areas
between rural and urban areas, for instance.

If any such decline were apparent, we would need to take greatcare with the interpretation. A decline
associated with the Firewise programme would not imply causation. Ideally, a comparison should be made
between those schools that did not have the Firewise programme delivered (the controls) and schools that did.
For instance, if there were evidence of a decline, it might besimply due to a general decline in structure fires
in proximity to schools.

Earlier data from a period before the Firewise programme wasdelivered could perhaps be used to study
both the short- and long-term effects. However, as noted above, it would be necessary to consider schools both
with and without the programme. A practical difficulty is that there have been changes in the way in which
data has been gathered over the years, so that earlier data may not be easily comparable in any case.

7 Blenheim suspicious fires

7.1 Problem and data

In this scenario, we examine methods for detecting increases in the frequency of fires possibly due to fire
laying by individuals (arson). The goal is to detect and isolate such events automatically from the collected
data of fire incidents.

The data we use here for illustrative purposes are the fire incidents that occurred in the area of Blenheim
between 1 Jan 2004 and 31 Dec 2007. It is known that a convictedarsonist had been laying vegetation fires
during the period between late October 2006 to early January2007 in this area. It appears to us that these
intentionally-laid fires are most likely correlated to those labeled “suspicious” by fire fighters on the spot.
Thus we have turned the original problem into one that detects changes in the frequency of suspicious fires.

Unlike in the previous two scenarios, this problem is very “irregular”. There may exist a large number
of potentially relevant variables, which may be of numerical or categorical types and have missing values.
The frequency of suspicious fires is most unlikely to exhibita nice, monotonic relationship with the variables
used. An arsonist may operate in certain time periods and in certain neighborhoods and light fires of certain
types. Such an irregularity makes it very hard for traditional statistical techniques, such as generalised linear
or additive models or univariate hypothesis testing, to provide nice solutions. Modern data mining techniques,
on the other hand, can be quite suitable for solving problemslike this. We demonstrate below how decision
tree models can be applied in this scenario.
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Figure 11: All fires in the area of Blenheim in 2004–2007 are plotted, as shown by dots, while suspicious fires
are also marked by circles.

The analysis below includes all the fire incidents in 2004–2007 in the rectangular region specified by

(MapgridE , MapgridN ) ∈ (2582000, 2600000)× (5954000, 5979000).

This gives a total of704 fire incidents,171 of which are suspicious. To facilitate the analysis, they are further
divided into two data sets, one for those events that occurred in 2004–2005 and the other for those in 2006–
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2007. These data sets contain, respectively,318 and386 fire incidents, of which80 and91 are suspicious.
These fires are plotted in Figure 11.

Both data sets thus created contain the following variables:

MapgridE map grid east (as given in the original data set)
MapgridN map grid north (as given)
CurrentUrbanRural binary variable, indicating whether an urban (1) or

rural (0) area (as given)
AlarmMethodCode alarm method code (as given)
IncidentType type of incident (as given)
Heatsource heat source (as given)
Obj1ignited object ignited (as given)
time time of the day∈ [0, 24),
day day of the two-year period∈ {1, 2, . . . , 731}
dayweek day of the week (1 = Monday,. . . , 7 = Sunday)
type binary variable (Susp = suspicious;Other = other type)

A small random subset from both data sets is given in AppendixC.1. Note that bothHeatsource and
Obj1ignited contain missing values, which are represented byNA(originally coded0).

In the following, we demonstrate how decision trees can be applied to detect changes in the frequencies
of suspicious fires between 2004–2005 and 2006–2007. Two approaches are adopted below. One is to build a
classification tree from one data set. Since patterns (rules) found from one data set are not necessarily changes,
all found rules are tested against the observations from theother data set that are covered by the same rules.
As a result, significant rules correspond to the differencesbetween the two data sets. The other approach is to
build a Poisson regression tree that directly describes thedifferences between the two data sets. The second
approach is more efficient.

7.2 Pattern discovery

We begin by building a classification tree from the first data set and test all the found rules against the second
data set; and then build another classification tree from thesecond data set and test the found rules against
the first data set. This should help us find the differences between the two data sets. It is also possible to use
Poisson regression trees, where daily or weekly counts of fires could be used as the response.

Classification trees are perhaps the most popular type of decision tree to be used in practice. The goal
is to maximise the separation of observations that belong todifferent classes (hereOther vs. Susp ). The
resulting classification tree should then tend to have different proportions for a class at the terminal nodes,
where predictions are made for new observations based on theproportions achieved from the training data.

The classification tree built from the first two years of data is shown in Figure 12, with its more detailed text
version given in Appendix C.2. The tree identifies7 situations (or rules) where the proportions of suspicious
fires should be distinguished. Each rule here corresponds toa path from the root of the tree to a terminal
node, where the proportions of different types of fires are estimated from the training data. These seven rules
are listed in Table 1, in the ascending order of their estimated proportions of suspicious fires. These rules by
themselves are different, not only in terms of their estimated proportions of suspicious fires, but also in terms
of the splitting criteria used along their paths down to a terminal node. While rules built from one data set shed
light on how the proportions of suspicious fires are related to other variables, they are not directly indicating
differences from another data set, of course. Some rules maybe produced due to effects that are not of direct
interest here, e.g., seasonal effects. However, we can compare these rules with the second two years of data.
Then patterns that are due to factors such as seasonal effects should turn out to be insignificant. Any significant
rules that may remain can only be attibuted to the differences between the two data sets.

The test we use is the likelihood ratio test for Poisson distributions; see Appendix D for details of the
test. As shown in Table 1, there is only one rule, Rule 6, that is remarkably significant, with a p-value of
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Figure 12: Classification tree built from fire incidents occurred between 1 Jan 2004 and 31 Dec 2005 in the
Blenheim area

2004–2005 2006–2007
Proportion Other Suspicious Other Suspicious P-value

Rule 1 0.000 38 0 27 2 0.098
Rule 2 0.057 116 7 102 3 0.28
Rule 3 0.068 41 3 50 3 0.64
Rule 4 0.250 9 3 11 6 0.54
Rule 5 0.300 21 9 39 11 0.058
Rule 6 0.804 10 41 55 53 0.000000017
Rule 7 0.850 3 17 11 13 0.067

Table 1: Rules built from data between 2004–2005 and tested by data between 2006–2007

1.7 × 10−8. Nonetheless, the frequencies suggest that the significance is largely due to more fires of type
“Other” in 2006–2007, rather than a change in the frequency of suspicious fires.

2004–2005 2006–2007
Proportion Other Suspicious Other Suspicious P-value

Rule 1 0.000 13 0 9 0 0.69
Rule 2 0.040 106 9 97 4 0.31
Rule 3 0.116 69 37 129 17 0.0000022
Rule 4 0.200 30 9 44 11 0.24
Rule 5 0.682 16 8 14 30 0.0011
Rule 6 0.935 4 17 2 29 0.15

Table 2: Rules built from data between 2006–2007 and tested against data between 2004–2005

To be complete, we also need to find rules from the second data set and test them against the first data set.
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Figure 13: Classification tree built from fire incidents occurred between 1 Jan 2006 and 31 Dec 2007 in the
Blenheim area

The decision tree built from the second two years of data is shown in Figure 13, with its text version given in
Appendix C.2. There are in total6 rules (namly6 terminal nodes) that are found from the data set, and are
listed in Table 2. Two of the rules are highly significant and can be reformatted as follows:

Rule 3: IF 66 < Heatsource
371 < day

THEN type = Other

Rule 5: IF 66 < Heatsource < 75
day <= 371
7.15 <= time
IncidentType < 1406

THEN type = Susp

Rule 5 corresponds to a significant increase (about 22) in thefrequency of suspicious fires and appears
to be directly related to the arson case. In particular, it indicates that a change, in terms of the proportion
of suspicious fires, has occurred during the day time (after 7:09 am), before day 371 (7/Jan/2007), with heat
source covering a range with “Cigarettes, Matches and Candles”, and with incident types covering a range with
“Vegetation fires”. It possesses a very different characteristic from Rule 6, which has the highest proportion
of suspicious fires but specifies that the fires occurred between 12:00am and 7:09am and is not significant as a
change. Rule 3 is also significant but corresponds to a decrease in the frequncy of suspicious fires, as well as
a substantial increase in the frequency of other fires, whichoccurred after day 371 (7/Jan/2007).

7.3 Direct change detection

Alternatively, we can build a single Poisson regression tree for detecting changes directly between the two
data sets. Since there does not appear to be an implementation available in R (or in other data mining software
packages), we have partially implemented this method and applied it to the Blenheim data sets; see Appendix
C.3 for the tree produced.
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The main idea of this method is to search for the optimal splitting point in the value of each of the given
variables so that two given data sets differ most, in the sense of the likelihood ratio test (Appendix D). This
process is recursive, which divides the two data sets according to the found splitting criteria into smaller
and smaller subsets. It proceeds until some stopping criterion is satisfied, such as when there are too few
observations left (less than10 here) or when the minimal p-value among all candidate splitsis larger than a
user-chosen threshold value (0.05 here). This gives a tree-structured model, which can be further pruned back
by using the AIC, for example, to avoid overfitting.

2004–2005 2006–2007
Other Suspicious Other Suspicious P-value

Rule 1 4 0 18 28 0.000000000030
Rule 2 23 14 63 1 0.000000076
Rule 3 1 7 12 3 0.0018
Rule 4 4 0 9 6 0.0058
Rule 5 90 14 66 4 0.0083
Rule 6 11 5 3 14 0.0096
Rule 7 22 9 23 1 0.025
Rule 8 10 9 5 2 0.038
Rule 9 4 0 6 4 0.051
Rule 10 4 0 6 3 0.10
Rule 11 42 13 59 14 0.23
Rule 12 17 9 21 11 0.73
Rule 13 6 0 4 0 0.82

Table 3: Rules found by direct detection of changes between the data in 2004–2005 and in 2006–2007

All 13 rules that are found by the Poisson regression tree are listed in the ascending order of their p-values
in Table 3. The two most significant rules are as follows:

Rule 1: IF 1200 < IncidentType <= 1500
284 < day <= 384
MapgridE <= 2592500
MapgridN <= 5966004

THEN pvalue = 3.01e-11 [(4 0) (18 28)]

Rule 2: IF 1200 < IncidentType
434 < day <= 586

THEN pvalue = 7.59e-08 [(23 14) (63 1)]

Being the most significant, Rule 1 appears to directly relateto the arson case. In particular, it sug-
gests that a change, in terms of fire frequencies, has occurred between day 284 (11/Oct/2006) and day 384
(19/Jan/2007), with incident types covering a range with “Vegetation fires”, and in a particular neighbourhood
with MapgridE ≤ 2592500 andMapgridN ≤ 5966004. The change is due to a substantial increase in
suspicious fires (from0 to 28), as well as an increase in other fires (from4 to 18). The28 suspicious fires in
2006–2007 that are covered by this rule are shown in Figure 14.

Rule 2 specifies a situation where there is a decrease in the number of suspicious fires and yet an increase in
the number of other fires. This change took place between day 434 (10/Mar/2007) and day 586 (9/Aug/2007),
for incident types less than 1200 (thus excluding “Vegetation fires”).

The general conclusions that are drawn here are similar to those in Section 7.2, but the rules found by
detecting changes directly both provide more detail about the differences between the two data sets and are
supported by much stronger statistical evidence.
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Figure 14: All fires in the area of Blenheim in 2006–2007 are plotted, as shown by dots, while suspicious fires
covered by Rule 1 are also marked by circles.

7.4 Summary and remarks

In this scenario, we have demonstrated how irregular changes of fire frequencies can be detected by using deci-
sion tree methodology. Two specific methods are developed and applied to the data, with mutually supporting
conclusions obtained.

The second method can also be applied to build a tree for suspicious fires only or for any number of types
of fires. Further improvements on the method and its implementation are possible. We have not found similar
methods in the literature to those presented above.

The direct change detection method makes use of the data moreefficiently. It is possible that there may
be cases where the first method may fail to detect any significant change, but the second may still succeed in
doing so. The increased sensitivity of this method could be critically important for providing early warning
through an online monitoring system.

8 Discussion and recommendations

8.1 Expertise required

A good knowledge of both the subject matter and statistics isneeded to both analyze the data and interpret
the results. Knowledge of the subject matter is needed to determine the questions of interest and is useful in
selecting the most relevant variables for the problems under investigation. It also helps reduce substantially
the total number of variables that will be used in a statistical model and increases the efficiency of statistical
estimation. The choice of an appropriate model depends on the question of interest, and requires some statisti-
cal expertise. Some computer programming is always needed,if only to format the data correctly. Beyond that
some familiarity with computer packages is needed, and it may even be necessary to implement the method
that appears to be most suitable.
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8.2 Statistical and data mining methodology

Both conventional statistical methods and modern data mining tools can be useful for solving practical prob-
lems. Which sets of tools are more suitable depends on the specific problem under consideration. Conventional
statistical methods usually work better if their assumptions are satisfied reasonably well, while data mining
methodology is often applied in settings where the data exhibit some irregularity.

Although each of the three scenarios we considered is concerned with possible changes in the frequency of
fires, each scenario is different in nature, has different kinds of questions associated with it and responds best to
different statistical or data mining techniques. The first two scenarios were best addressed using conventional
statistical techniques while the third responded well to a data mining technique.

8.3 Software

Our investigation for this Fire Service project has been carried out exclusively in R (Ihaka and Gentleman,
1996; R Development Core Team, 2006). We believe it is the most appropriate environment for solving these
problems. R is a free, open-source software package and is well supported by the international R development
core team. It contains an extensive collection of built-in functionalities and tools for data analysis and mod-
elling, as well as many add-on packages that are contributedby researchers around the world to implement
their latest research. Indeed, implementations in R can be found for almost all of the methods mentioned
above. It provides a nice programming environment, facilities for implementing new ideas quickly, and inter-
faces to other programming languages and software, if theseare required. It also has many elegant graphical
functionalities that can help understand data better, discover hidden relationships and present results nicely.
An R programme can be easily run online at regular times, in anautomatic manner, and/or with options speci-
fied for different queries. R is very widely used, and is the preferred computing environment for professional
statisticians.

Although we did not use them in this project, there are also some other data mining software packages that
may be potentially useful, depending on the problems under investigation. Among them, WEKA (Witten and
Frank (2005)) is an internationally-known, freely-available data mining benchmarking package. Although it is
implemented in the JAVA language, using the implemented methods does not require knowledge of JAVA and
can be fully done through a user-friendly graphical interface. A large number of data mining methods have
been implemented in WEKA, perhaps more than any other singledata mining software package.

There are also a number of commercial data mining software packages, including the better known ones:
Enterprise Miner of SAS, Insightful Miner of S-Plus, Data Mining Suite of Salford Systems, and RuleQuest.
While these systems usually contain implementatons of commonly-used methods such as decision trees, neural
networks and support vector machines, they may also providespecialised methods that have been developed
by well-known researchers, such as MARS and RandomForest ofSalford Systems, and Cubist and GritBot in
RuleQuest.

Nevertheless, the major research effort in the data mining community is on classification and regression
problems, where the response variable is either categorical or continuous. For count data, as in the three
scenarios studied above, there appear to be very few implemented methods that can be used off the shelf to
answer questions that may arise from the Fire Service perspective. It is therefore not entirely clear to us what
additional benefits these commercial packages can bring to the analysis of these data.

8.4 Data

The data collected on fire events is extensive and very detailed – this is a very rich data set. We experienced
some difficulties with the large numbers of categories available for some fields and, the possible overlap
between them, and the fact that different types of fire eventsrequire different fields to be entered.
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The numbers of categories for some types of incident are large, and the categories are not always mutually
exclusive. While some categories of fire appear easy to identify (e.g. house fires), fires lit as a result of
deliberate fire laying are harder to identify, since there are several categories that could cover this. Thus under
fire cause, deliberately lit fires can fall into several categories including “unlawful”, “legality not known”,
“suspicious”, and “not classified”.

Not all fire events have data recorded for each field. In particular, miscellaneous fires have missing entries
in many fields, including Heat Source and Object Ignited. Miscellaneous fires constituted 37.1% of the fire
events in 2003-2007 (35,345 of a total 95,303 events). It would be desirable to have greater consistency in the
data fields recorded for each event. It may on occasions be tempting to classify fires as miscellaneous, since
that then requires fewer additional fields to be entered.

8.5 Recommendations

In summary, we make the following recommendations:-

• If the New Zealand Fire Service were to implement an automatic detection system, it would need to be
tailored to detect particular scenarios of interest, and supplemented with statistical analyses of patterns
that might be detected.

• The decision tree analysis developed here has potential forreal time detection of changes in the incidence
of fire events such as those associated with arson. We recommend that further development work be
undertaken on this.

• We recommend using the statistical environment R for data analysis. It is the preferred tool for profes-
sional statisticians, has the flexibility to allow non-standard analyses and can easily be integrated with
data servers. In addition, it is free, open-source software.

• The temporal and spatial data originating from the computerised dispatch system is effective for pattern
detection, but the large number of response options, many ofwhich overlap or are potentially ambiguous,
may lead to loss of information. We recommend that further consideration be given to data collection
design.
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A Chimney fires – R output

A.1 Data
> city.chmn.fires[sort(sample(nrow(city.chmn.fires), 30)),]

city pop day month year weekend fwi humid T D1 D2 count
320 Akl 1208 320 11 1 FALSE 1.78 53 18.8 -1.5 0.0 0
463 Akl 1208 463 4 2 FALSE 10.80 51 25.5 3.5 -0.7 0
1043 Akl 1208 1043 11 3 FALSE 0.38 79 16.4 -6.7 3.5 0
1421 Akl 1208 1421 11 4 FALSE 5.08 64 20.1 1.1 -1.4 0
1859 Ham 155 398 2 2 FALSE 21.14 56 26.0 -1.0 2.0 0
2008 Ham 155 547 6 2 FALSE 3.12 56 10.0 -5.0 4.0 0
2071 Ham 155 610 9 2 FALSE 1.35 75 16.0 0.0 1.0 0
2161 Ham 155 700 11 2 FALSE 4.95 53 21.0 1.0 5.0 0
2329 Ham 155 868 5 3 FALSE 0.32 76 10.3 -2.3 1.5 0
2361 Ham 155 900 6 3 TRUE 0.00 95 10.0 2.2 -5.6 0
2554 Ham 155 1093 12 3 FALSE 12.12 64 20.0 0.0 -1.0 0
2613 Ham 155 1152 2 4 TRUE 15.70 54 22.0 -4.0 3.0 0
2884 Ham 155 1423 11 4 FALSE 5.86 61 20.0 1.0 -1.0 0
2902 Ham 155 1441 12 4 FALSE 3.48 77 20.0 0.0 0.0 0
3328 Wel 276 406 2 2 FALSE 21.69 61 25.0 2.0 -2.0 0
4228 Wel 276 1306 7 4 TRUE 1.34 69 14.0 0.0 0.0 0
4384 Chr 361 1 1 1 FALSE 45.77 31 29.0 6.0 5.0 0
4419 Chr 361 36 2 1 FALSE 5.52 53 16.0 -8.0 3.0 0
4934 Chr 361 551 7 2 FALSE 2.57 89 10.3 -3.9 5.2 0
4988 Chr 361 605 8 2 TRUE 2.99 85 5.7 -6.0 1.0 0
5527 Chr 361 1144 2 4 TRUE 9.83 56 20.0 4.0 -1.0 0
5607 Chr 361 1224 5 4 FALSE 2.42 62 16.9 -2.1 4.0 0
5644 Chr 361 1261 6 4 FALSE 8.37 77 8.0 1.0 -3.0 0
5959 Dun 111 115 4 1 TRUE 1.68 74 13.0 -1.0 0.0 0
6346 Dun 111 502 5 2 FALSE 0.47 64 9.3 -2.1 2.0 0
6760 Dun 111 916 7 3 FALSE 0.07 71 6.7 -5.6 -0.6 1
7438 Inv 47 133 5 1 FALSE 2.06 93 10.0 -2.0 1.0 2
8155 Inv 47 850 4 3 TRUE 0.76 77 13.0 -2.0 1.0 0
8320 Inv 47 1015 10 3 FALSE 2.55 73 12.0 5.0 -4.0 1
8587 Inv 47 1282 7 4 FALSE 0.00 86 5.0 -1.0 -2.0 1
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A.2 Poisson decision trees
> library(rpart)
> rpart(count ˜ ., data=city.chmn.fires, method="poisson ", cp=0.005)

n= 8766

node), split, n, deviance, yval

* denotes terminal node

1) root 8766 4300.0 0.0997
2) T>=11.9 6550 2130.0 0.0546

4) T>=16.9 3280 611.0 0.0249
8) month=1,2,3,4,5,10,11,12 3121 492.0 0.0204 *
9) month=6,7,8,9 159 89.5 0.1120 *

5) T< 16.9 3270 1410.0 0.0845
10) city=Ham 522 39.1 0.0094 *
11) city=Akl,Wel,Chr,Dun,Inv 2748 1300.0 0.0990

22) month=1,2,3,5,10,11,12 1537 545.0 0.0640 *
23) month=4,6,7,8,9 1211 712.0 0.1430 *

3) T< 11.9 2216 1720.0 0.2330
6) city=Akl,Ham,Wel,Chr,Inv 1681 1140.0 0.1800

12) city=Ham 164 29.8 0.0287 *
13) city=Akl,Wel,Chr,Inv 1517 1080.0 0.1960 *

7) city=Dun 535 501.0 0.3940 *
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A.3 Poisson regression

Using all covariates

> r = glm(count ˜ . - day - pop, offset=log(pop), data=city.ch mn.fires,
family="poisson")

> summary(r)

Call:
glm(formula = count ˜ . - day - pop, family = "poisson", data = c ity.chmn.fires,

offset = log(pop))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.297 -0.481 -0.291 -0.166 3.998

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.78670 0.52215 -16.83 < 2e-16 ***
cityHam -0.26029 0.31688 -0.82 0.41141
cityWel 1.32943 0.14136 9.40 < 2e-16 ***
cityChr 1.27437 0.14033 9.08 < 2e-16 ***
cityDun 2.97482 0.13398 22.20 < 2e-16 ***
cityInv 3.36725 0.14180 23.75 < 2e-16 ***
month2 0.16314 0.33938 0.48 0.63073
month3 0.48466 0.31047 1.56 0.11851
month4 0.89715 0.28883 3.11 0.00190 **
month5 1.07054 0.28805 3.72 0.00020 ***
month6 1.40721 0.29454 4.78 1.8e-06 ***
month7 1.36316 0.29527 4.62 3.9e-06 ***
month8 1.41084 0.28980 4.87 1.1e-06 ***
month9 1.36305 0.28162 4.84 1.3e-06 ***
month10 0.75024 0.29363 2.56 0.01062 *
month11 0.51057 0.30497 1.67 0.09410 .
month12 -0.13101 0.35034 -0.37 0.70843
year -0.07111 0.03023 -2.35 0.01865 *
weekendTRUE 0.17980 0.07257 2.48 0.01323 *
fwi 0.00361 0.00810 0.45 0.65563
humid -0.00349 0.00323 -1.08 0.28055
T -0.09735 0.01534 -6.35 2.2e-10 ***
D1 0.00219 0.01371 0.16 0.87287
D2 0.01085 0.01164 0.93 0.35103
---
Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5605.1 on 8765 degrees of freedom
Residual deviance: 3390.8 on 8742 degrees of freedom
AIC: 5058

Number of Fisher Scoring iterations: 7
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Model selection using AIC

> step(r)
Start: AIC= 5058

count ˜ (city + pop + day + month + year + weekend + fwi + humid +
T + D1 + D2) - day - pop

Df Deviance AIC
- D1 1 3391 5056
- fwi 1 3391 5056
- D2 1 3392 5057
- humid 1 3392 5057
<none> 3391 5058
- year 1 3396 5062
- weekend 1 3397 5062
- T 1 3431 5096
- month 11 3474 5119
- city 5 4287 5945

Step: AIC= 5056
count ˜ city + month + year + weekend + fwi + humid + T + D2

Df Deviance AIC
- fwi 1 3391 5054
- D2 1 3392 5055
- humid 1 3392 5055
<none> 3391 5056
- year 1 3396 5060
- weekend 1 3397 5060
- T 1 3444 5107
- month 11 3490 5133
- city 5 4391 6046

Step: AIC= 5054
count ˜ city + month + year + weekend + humid + T + D2

Df Deviance AIC
- D2 1 3392 5053
- humid 1 3393 5054
<none> 3391 5054
- year 1 3396 5058
- weekend 1 3397 5058
- T 1 3445 5106
- month 11 3490 5132
- city 5 4398 6052

Step: AIC= 5053
count ˜ city + month + year + weekend + humid + T

Df Deviance AIC
- humid 1 3393 5053
<none> 3392 5053
- year 1 3398 5057
- weekend 1 3398 5057
- T 1 3445 5105
- month 11 3495 5135
- city 5 4404 6056

Step: AIC= 5053
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count ˜ city + month + year + weekend + T

Df Deviance AIC
<none> 3393 5053
- year 1 3399 5056
- weekend 1 3399 5057
- T 1 3459 5116
- month 11 3506 5143
- city 5 4467 6116
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A.4 Generalised additive models
> library(gam)
> r = gam(count ˜ s(T,df=3) + year + s(humid,df=3) + month + wee kend + city,

offset=log(pop), data=city.chmn.fires, family="poisso n")
> summary(r)

Call: gam(formula = count ˜ s(T, df = 3) + year + s(humid, df = 3) +
month + weekend + city, family = "poisson", data = city.chmn. fires,
offset = log(pop))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.208 -0.488 -0.287 -0.154 4.036

(Dispersion Parameter for poisson family taken to be 1)

Null Deviance: 4298 on 8765 degrees of freedom
Residual Deviance: 3378 on 8741 degrees of freedom
AIC: 5047

Number of Local Scoring Iterations: 8

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1
s(T, df = 3) 1 2 10.03 0.01
year 1
s(humid, df = 3) 1 2 4.36 0.11
month 11
weekend 1
city 5
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B Firewise programme – R output

B.1 Data

For structure fires of incident types 1101 and 1102:

> all.fw[sort(sample(nrow(all.fw), 30)),]

school year season gf stathol firewise count
17408 84 3 Spr FALSE FALSE FALSE 0
28872 139 4 Aut FALSE FALSE FALSE 0
43153 208 2 Spr TRUE FALSE TRUE 0
45326 218 4 Win FALSE FALSE FALSE 0
64910 313 1 Aut FALSE FALSE FALSE 0
72497 349 3 Sum FALSE FALSE TRUE 0
75011 361 3 Win FALSE FALSE TRUE 0
75790 365 2 Win FALSE FALSE FALSE 0
90108 434 1 Spr FALSE FALSE FALSE 0
98911 476 3 Sum FALSE FALSE TRUE 0
101031 486 3 Spr FALSE FALSE FALSE 1
110672 533 1 Aut FALSE FALSE FALSE 0
112558 542 1 Win FALSE FALSE FALSE 0
131782 634 3 Aut FALSE FALSE TRUE 0
141140 679 3 Aut FALSE FALSE TRUE 1
154543 743 4 Sum FALSE FALSE TRUE 0
197876 952 2 Aut FALSE FALSE FALSE 0
202442 974 2 Sum FALSE FALSE FALSE 0
227749 1095 4 Spr FALSE FALSE FALSE 0
259896 1250 2 Sum FALSE TRUE TRUE 0
273073 1313 4 Aut FALSE FALSE FALSE 0
278375 1339 2 Aut FALSE FALSE FALSE 0
280147 1347 4 Win FALSE TRUE FALSE 0
290841 1399 2 Sum FALSE FALSE FALSE 1
295974 1423 4 Spr FALSE FALSE FALSE 0
299630 1441 3 Sum FALSE TRUE TRUE 0
313801 1509 3 Win FALSE FALSE TRUE 0
329736 1586 2 Sum FALSE FALSE FALSE 0
334978 1611 2 Spr FALSE FALSE TRUE 0
348651 1677 1 Spr FALSE TRUE FALSE 0
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B.2 Poisson regression
> r = glm(count ˜ . - school, family=poisson, data=all.fw)
> summary(r)

Call:
glm(formula = count ˜ . - school, family = poisson, data = all. fw)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.2894 -0.2546 -0.2469 -0.2407 6.4326

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.547513 0.030003 -118.240 < 2e-16 ***
year 0.023451 0.008686 2.700 0.00694 **
seasonSum -0.084339 0.028973 -2.911 0.00360 **
seasonAut 0.010104 0.028087 0.360 0.71906
seasonWin 0.120909 0.027312 4.427 9.56e-06 ***
gfTRUE 0.280670 0.064187 4.373 1.23e-05 ***
statholTRUE -0.051231 0.030561 -1.676 0.09368 .
firewiseTRUE -0.021838 0.021578 -1.012 0.31152
---
Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 76335 on 349439 degrees of freedom
Residual deviance: 76246 on 349432 degrees of freedom
AIC: 97083

Number of Fisher Scoring iterations: 6
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B.3 Mixed-effects Poisson regression
> library(lme4)
> r = glmer(count ˜ . - school + (1 | school), family=poisson, d ata=all.fw)
> summary(r)

Generalized linear mixed model fit by the Laplace approxima tion
Formula: count ˜ . - school + (1 | school)

Data: all.fw
AIC BIC logLik deviance

67634 67731 -33808 67616
Random effects:

Groups Name Variance Std.Dev.
school (Intercept) 1.57 1.25

Number of obs: 349440, groups: school, 1680

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.21789 0.04448 -94.8 < 2e-16 ***
year 0.02434 0.00873 2.8 0.0053 **
seasonSum -0.08470 0.02913 -2.9 0.0036 **
seasonAut 0.00947 0.02824 0.3 0.7373
seasonWin 0.12091 0.02746 4.4 1.1e-05 ***
gfTRUE 0.28071 0.06453 4.4 1.4e-05 ***
statholTRUE -0.05111 0.03072 -1.7 0.0962 .
firewiseTRUE -0.03734 0.02221 -1.7 0.0927 .
---
Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) year sesnSm sesnAt sesnWn gfTRUE stTRUE

year -0.475
seasonSum -0.317 0.003
seasonAut -0.332 0.000 0.512
seasonWin -0.341 0.003 0.518 0.534
gfTRUE -0.146 -0.001 0.216 0.226 0.234
statholTRUE -0.042 -0.024 -0.131 -0.054 0.007 0.038
firewisTRUE -0.078 -0.140 0.017 0.029 -0.003 -0.001 -0.006
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C Blenheim suspicious fires - R output

C.1 Data
> blenheim1[sort(sample(nrow(blenheim1), 5)),]

MapgridE MapgridN CurrentUrbanRural AlarmMethodCode Inc identType
19828 2588409 5965751 1 11 1501
22427 2586740 5972911 0 11 1201
28762 2590169 5964929 1 11 1502
28821 2593940 5973917 0 11 1312
43544 2589277 5971743 0 52 1201

Heatsource Obj1ignited day time dayweek type
19828 NA NA 108 17.500 6 Other
22427 67 911 245 15.300 3 Other
28762 NA NA 676 1.683 7 Susp
28821 99 723 704 8.617 7 Other
43544 67 911 555 9.050 5 Other

> blenheim2[sort(sample(nrow(blenheim2), 5)),]

MapgridE MapgridN CurrentUrbanRural AlarmMethodCode Inc identType
64734 2587836 5966137 1 11 1301
64900 2588460 5962670 1 11 1312
66143 2589938 5963648 1 11 1502
73062 2589623 5965200 1 11 1102
75205 2588260 5966055 1 11 1201

Heatsource Obj1ignited day time dayweek type
64734 61 721 287 13.37 6 Other
64900 NA 811 672 18.38 6 Other
66143 NA NA 595 0.75 6 Susp
73062 45 116 578 19.30 3 Other
75205 NA 912 650 21.28 5 Other
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C.2 Pattern discovery and testing
> rpart(type ˜ ., blenheim1, cp=0.05, method="class")

n= 318

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 318 80 Other (0.74843 0.25157)
2) Heatsource< 64.5 123 7 Other (0.94309 0.05691) *
3) Heatsource>=64.5 195 73 Other (0.62564 0.37436)

6) Heatsource>=70.5 38 0 Other (1.00000 0.00000) *
7) Heatsource< 70.5 157 73 Other (0.53503 0.46497)

14) IncidentType>=1356 94 29 Other (0.69149 0.30851)
28) IncidentType< 1502 44 3 Other (0.93182 0.06818) *
29) IncidentType>=1502 50 24 Susp (0.48000 0.52000)

58) day>=277.5 30 9 Other (0.70000 0.30000) *
59) day< 277.5 20 3 Susp (0.15000 0.85000) *

15) IncidentType< 1356 63 19 Susp (0.30159 0.69841)
30) MapgridN>=5.969e+06 12 3 Other (0.75000 0.25000) *
31) MapgridN< 5.969e+06 51 10 Susp (0.19608 0.80392) *

> rpart(type ˜ ., blenheim2, cp=0.05, method="class")

n= 386

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 386 91 Other (0.76425 0.23575)
2) Heatsource< 66.5 101 4 Other (0.96040 0.03960) *
3) Heatsource>=66.5 285 87 Other (0.69474 0.30526)

6) day>=371.5 146 17 Other (0.88356 0.11644) *
7) day< 371.5 139 69 Susp (0.49640 0.50360)

14) time>=7.15 108 41 Other (0.62037 0.37963)
28) Heatsource>=75 9 0 Other (1.00000 0.00000) *
29) Heatsource< 75 99 41 Other (0.58586 0.41414)

58) IncidentType>=1406 55 11 Other (0.80000 0.20000) *
59) IncidentType< 1406 44 14 Susp (0.31818 0.68182) *

15) time< 7.15 31 2 Susp (0.06452 0.93548) *
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C.3 Direct change detection

The following is the R output for the Poisson regression treebuilt for detecting directly the differences between
two data sets. Each terminal node is marked by an asterisk andhas five additional values printed. The pair in
the first parenthesis are the frequencies of the events (Other andSusp here) from the first data set, while the
pair in the second parenthesis are those from the second dataset. The last value is the p-value of the likelihood
ratio test for heterogeneity between the rates of the fire events in the two data sets under the circumstance
specified by the splitting criteria along the path.

> dtd(blenheim1, blenheim2)

IncidentType <= 1200: (90 14) (66 4) 0.00827 *
IncidentType > 1200:
| day <= 384:
| | day <= 284:
| | | IncidentType <= 1502:
| | | | day <= 60.5: (10 9) (5 2) 0.0384 *
| | | | day > 60.5:
| | | | | IncidentType <= 1312: (11 5) (3 14) 0.00957 *
| | | | | IncidentType > 1312: (17 9) (21 11) 0.733 *
| | | IncidentType > 1502: (1 7) (12 3) 0.00182 *
| | day > 284:
| | | MapgridE <= 2592500:
| | | | MapgridN <= 5966984:
| | | | | MapgridN <= 5966004:
| | | | | | IncidentType <= 1500: (4 0) (18 28) 3.01e-11 *
| | | | | | IncidentType > 1500: (4 0) (9 6) 0.00582 *
| | | | | MapgridN > 5966004: (4 0) (6 4) 0.0511 *
| | | | MapgridN > 5966984: (4 0) (6 3) 0.102 *
| | | MapgridE > 2592500: (6 0) (4 0) 0.818 *
| day > 384:
| | day <= 586:
| | | day <= 434: (22 9) (23 1) 0.0249 *
| | | day > 434: (23 14) (63 1) 7.59e-08 *
| | day > 586: (42 13) (59 14) 0.233 *
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D Likelihood ratio test

Let x1 be the number of events in the first data set andx2 be that in the second data set with the same expo-
sure. Assume thatxi, i = 1, 2, has the Poisson distribution with rateλi, with densityf(xi; λi). For testing
homogeneity

H0 : λ1 = λ2,

the likelihood ratio test statistic is given by

W = 2

{

log f(x1; x1) + log f(x2; x2) − log f(x1;
x1 + x2

2
) − log f(x2;

x1 + x2

2
)

}

.

The statisticW has approximatelyχ2

1
, the chi-square distribution with1 degree of freedom.

If there arek types of events in both data sets, then the likelihood ratio test statisticW for testing ho-
mogeneity is the sum of the individual ones. It thus has approximatelyχ2

k, the chi-square distribution withk
degrees of freedom. For example, the most significant rule produced by the Poisson regression tree that detects
differences directly, as given in Appendix C.3, has(4 0) for the frequencies of other and suspicious fires in
the first data set and(18 28) for those in the second data set. The test statistic value is

W = 2 {log f(4; 4) + log f(18; 18) − log f(4; 11) − log f(18; 11)}+

2 {log f(0; 0) + log f(28; 28) − log f(0; 14) − log f(28; 14)}

≈ 48.45,

which hasχ2

2
and hence gives thep-value3.01 × 10−11.
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